Skip to main content
Log in

Identification and utilization of a 1,3-propanediol oxidoreductase isoenzyme for production of 1,3-propanediol from glycerol in Klebsiella pneumoniae

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In a previous study, we showed that 1,3-propanediol (1,3-PD) was still produced from glycerol by the Klebsiella pneumoniae mutant strain defective in 1,3-PD oxidoreductase (DhaT), although the production level was lower compared to the parent strain. As a potential candidate for another putative 1,3-PD oxidoreductase, we identified and characterized a homolog of Escherichia coli yqhD (88% homology in amino acid sequence), which encodes an alcohol dehydrogenase and is well known to replace the function of DhaT in E. coli. Introduction of multiple copies of the yqhD homolog restored 1,3-PD production in the mutant K. pneumoniae strain defective in DhaT. In addition, by-product formation was still eliminated in the recombinant strain due to the elimination of the glycerol oxidative pathway. An increase in NADP-dependent 1,3-PD oxidoreductase activity was observed in the recombinant strain harboring multiple copies of the yqhD homolog. The level of 1,3-PD production during batch fermentation in the recombinant strain was comparable to that of the parent strain; further engineering can generate an industrial strain producing 1,3-propanediol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bhatia SK, Kurian JV (2008) Biological characterization of Sorona polymer from corn-derived 1,3-propanediol. Biotechnol Lett 30:619–623

    Article  CAS  Google Scholar 

  • Broosmer C, Arntz D (2000) Process for the production of 1,3-propanediol. US Patent 6140543

  • da Silva GP, Mack M, Contiero J (2009) Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv 27:30–39

    Article  Google Scholar 

  • Emptage M, Haynie SL, Laffend LA, Pucci JP, White G (2003) Process for the biological production of 1,3-propanediol with high titer. US patent no 6514733

  • Fournet-Fayard S, Joly B, Forestier C (1995) Transformation of wild type Klebsiella pneumoniae with plasmid DNA by electroporation. J Microbiol Methods 24:49–54

    Article  Google Scholar 

  • Gonzlez-Pajuedo M, Andrade JC, Vasconcelos I (2004) Production of 1,3-propanediol by Clostridium butyricum VPI 3266 using a synthetic medium and raw glycerol. J Ind Microbiol Biotechnol 31:442–446

    Article  Google Scholar 

  • Gust B, Kieser T, Chater KF (2002) REDIRECT technology: PCR-targeting system in Streptomyces coelicolor. John Innes Centre, UK

    Google Scholar 

  • Johnson DT, Taconi KA (2007) The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ Prog Sustain Energy 26:338–348

    CAS  Google Scholar 

  • Marçal D, Rêgo AT, Carrondo MA, Enguita FJ (2009) 1,3-Propanediol-dehydrogenase from Klebsiella pneumoniae: decameric quaternary structure and possible subunit cooperativity. J Bacteriol 191:1143–1151

    Article  Google Scholar 

  • Menzel K, Zeng AP, Deckwer WD (1997) High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzyme Microb Technol 20:82–86

    Article  CAS  Google Scholar 

  • Mu Y, Teng H, Zhang DJ, Wang W, Xiu ZL (2006) Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnol Lett 28:1755–1759

    Article  CAS  Google Scholar 

  • Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14:454–459

    Article  CAS  Google Scholar 

  • Oh BR, Seo JW, Choi MH, Kim CH (2008) Optimization of culture conditions for 1,3-propanediol production from crude glycerol by Klebsiella pneumoniae using response surface methodology. Biotechnol Bioprocess Eng 13:524–532

    Article  Google Scholar 

  • Pagliaro M, Ciriminna R, Kimura H, Rossi M, Pina CD (2007) From glycerol to value-added products. Angew Chem Int Eng 46:4434–4440

    Article  CAS  Google Scholar 

  • Papanikolaou S, Ruiz-Sanchez P, Rariset B, Blanchard F, Fick M (2000) High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain. J Biotechnol 77:191–208

    Article  CAS  Google Scholar 

  • Rao Z, Ma Z, Shen W, Fang H, Zhuge J, Wang X (2008) Engineered Saccharomyces cerevisiae that produces 1,3-propanediol from d-glucose. J Appl Microbiol 105:1768–1776

    Article  CAS  Google Scholar 

  • Ruch FE, Lengeler J, Lin ECC (1974) Regulation of glycerol catabolism in Klebsiella aerogenes. J Bacteriol 119:50–56

    CAS  Google Scholar 

  • Seo MY, Seo JW, Heo SY, Baek JO, Rairakhwada D, Oh BR, Seo PS, Choi MH, Kim CH (2009) Elimination of by-product formation during production of 1,3-propandiol in Klebsiella pneumoniae by inactivation of glycerol oxidative pathway. Appl Microbiol Biotechnol. doi:10.1007/s00253-009-1980-1

    Google Scholar 

  • Skraly FA, Lytle BL, Cameron DC (1998) Construction and characterization of a 1,3-propanediol operon. Appl Environ Microbiol 64:98–105

    CAS  Google Scholar 

  • Sulzenbacher G, Alvarez K, Van Den Heuvel RH, Versluis C, Spinelli S, Campanacci V, Valencia C, Cambillau C, Eklund H, Tegoni M (2004) Crystal structure of E. coli alcohol dehydrogenase YqhD: evidence of a covalently modified NADP coenzyme. J Mol Biol 10:489–502

    Article  Google Scholar 

  • Sun J, van den Heuvel J, Soucaille P, Qu Y, Zeng AP (2003) Comparative genomic analysis of dha regulon and related genes for anaerobic glycerol metabolism in bacteria. Biotechnol Prog 19:263–272

    Article  CAS  Google Scholar 

  • Tang X, Tan Y, Zhu H, Zhao K, Shen W (2009) Microbial conversion of glycerol to 1,3-propanediol by an engineered strain of Escherichia coli. Appl Environ Microbiol 75:1628–1634

    Article  CAS  Google Scholar 

  • Wang F, Qu H, Zhang D, Tian P, Tan T (2007) Production of 1,3-propanediol from glycerol by recombinant E. coli using incompatible plasmids. Mol Biotechnol 37:112–119

    Article  CAS  Google Scholar 

  • Xiu ZL, Zeng AP (2008) Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl Microbiol Biotechnol 78:917–926

    Article  CAS  Google Scholar 

  • Yang G, Tian J, Li J (2007) Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions. Appl Microbiol Biotechnol 73:1017–1024

    Article  CAS  Google Scholar 

  • Zeng AP, Biebl H (2002) Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv Biochem Eng Biotechnol 74:239–259

    CAS  Google Scholar 

  • Zhang XM, Zhuge J (2007) Construction of novel recombinant strain harboring glycerol dehydratase reactivating factor capable of producing 1,3-propanediol. Sheng Wu Gong Cheng Xue Bao 23:841–845

    CAS  Google Scholar 

  • Zhang XM, Tang XM, Zhuge B, Shen W, Rao ZM, Fang HY, Zhuge J (2005) Construction of novel recombinant Escherichia coli capable of production 1,3-propanediol. Sheng Wu Gong Cheng Xue Bao 21:743–747

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the KRIBB Research Initiative Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chul Ho Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, JW., Seo, MY., Oh, BR. et al. Identification and utilization of a 1,3-propanediol oxidoreductase isoenzyme for production of 1,3-propanediol from glycerol in Klebsiella pneumoniae . Appl Microbiol Biotechnol 85, 659–666 (2010). https://doi.org/10.1007/s00253-009-2123-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2123-4

Keywords

Navigation