Skip to main content
Log in

An alternative high-throughput staining method for detection of neutral lipids in green microalgae for biodiesel applications

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A simple and high-throughput method for determining in situ intracellular neutral lipid accumulation in Chlorella ellipsoidea and Chlorococcum infusionum with flow cytometry and confocal microscopy was established by employing different solvents and a lipophilic dye, Nile red. Seven different organic solvents, acetic acid, dimethyl sulfoxide (DMSO), acetone, methanol, ethanol, n-hexane, and chloroform at different concentrations ranging from 0 to 80% (v/v) were tested. The fluorescence signal for neutral lipids was collected with a 586/42 emission filter (PE-A) and the maximum fluorescence intensity (% grandparent) was measured as 74.01 ± 4.82% for Chlorella and 70.1 ± 5.52% for Chlorococcum at 30% acetic acid (v/v). The statistical analysis of Nile red-stained cells showed a high coefficient of variation (CV), standard deviation (SD), mean, and median values in the acetic acid-based staining method, followed by DMSO, n-hexane and chloroform. Confocal microscopy revealed a high rate of accumulation of cytosolic neutral lipids when stained with Nile red and other organic solvents. Higher lipid accumulation in Fesupplemented conditions was also detected and a maximum lipid content of 57.36 ± 0.41% (4-fold) in Chlorella and 48.20 ± 0.43% (4-fold) in Chlorococcum were measured at 0.001 g/L of ferrous sulfate (FeSO4). High fluorescence intensity (75.16 ± 0.24% in Chlorella and 72.24 ± 1.07% in Chlorococcum) in Fe-treated cells confirmed the efficiency of the staining procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu, Q., M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert, and A. Darzins (2008) Microalgal triacylglycerols as feed stocks for biofuel production: Perspective and advances. Plant J. 54: 621–639.

    Article  CAS  Google Scholar 

  2. Kaewkannetra, P., P. Enmak, and T. Y. Chiu (2012) The Effect of CO2 and salinity on the cultivation of Scenedesmus obliquus for biodiesel production. Biotechnol. Bioproc. Eng. 17: 591–597.

    Article  CAS  Google Scholar 

  3. Borowitzka, M. A. and N. R. Moheimani (2013) Sustainable biofuels from algae. Mitig. Adapt. Strategies Glob. Chang. 18: 13–25.

    Article  Google Scholar 

  4. Khan, S., A. Rashmi, M. Z. Hussain, S. Prasad, and U. C. Banerjee (2009) Prospects of biodiesel production from microalgae in India. Renew. Sust. Energ. Rev. 13: 2361–2372.

    Article  CAS  Google Scholar 

  5. Abou-Shanab, R. A. I., M. M. El-Dalatony, M. M. El-Sheekh, M. -K. Ji, E. -S. Salma, A. N. Kabra, and B. -H. Jeon (2014) Cultivation of a new microalga, Micractinium reisseri, in municipal wastewater for nutrient removal, biomass, lipid, and fatty acid production. Biotechnol. Bioproc. Eng. 19: 510–518.

    Article  CAS  Google Scholar 

  6. Zhang, K., B. Sun, X. She, F. Zhao, Y. Cao, D. Ren, and J. Lu (2014) Lipid production and composition of fatty acids in Chlorella vulgaris cultured using different methods: Photoautotrophic, heterotrophic, and pure and mixed conditions. Ann. Microbiol. 64: 1239–1246.

    Article  CAS  Google Scholar 

  7. Benemann, J. R. (2000) Hydrogen production by microalgae. J. Appl. Phycol. 12: 291–300.

    Article  CAS  Google Scholar 

  8. Schenk, P. M., R. Skye, T. Hall, E. Stephens, U. C. Marx, J. H. Mussgnug, C. Posten, O. Kruse, and B. Hankamer (2008) Second generation biofuels: High efficiency microalgae for biodiesel production. Bioenerg. Res. 1: 20–43.

    Article  Google Scholar 

  9. Battah, M., Y. El-Ayoty, A. E. -F. Abomohra, S. A. El-Ghany, and A. Esmael (2015) Effect of Mn2+, Co2+ and H2O2 on biomass and lipids of the green microalga Chlorella vulgaris as a potential candidate for biodiesel production. Ann. Microbiol. 65: 155–162.

    Article  CAS  Google Scholar 

  10. Rashid, U., F. Anwar, B. R. Moser, and G. Knothe (2008) Moringa oleifera oil: A possible source of biodiesel. Bioresour. Technol. 99: 8175–8179.

    Article  CAS  Google Scholar 

  11. Sharma, K. K., H. Schuhmann, and P. M. Schenk (2012) High lipid induction in microalgae for biodiesel production. Energie. 5: 1532–1553.

    Article  CAS  Google Scholar 

  12. Huang, L., J. Xu, T. Li, L. Wang, T. Deng, and X. Yu (2014) Effects of additional Mg2+ on the growth, lipid production, and fatty acid composition of Monoraphidium sp. FXY-10 under different culture conditions. Ann. Microbiol. 64: 1247–1256.

    Article  CAS  Google Scholar 

  13. Bligh, E. and W. J. Dyer (1959) A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917.

    Article  CAS  Google Scholar 

  14. Engler, C. R. (1985) Disruption of microbial cells. pp. 305–324. 2nd ed., In: Moo-Yoong. M. (ed.). Comprehensive biotechnology. Pergamon Press, Oxford, UK.

    Google Scholar 

  15. Lee, S. J., B. D. Yoon, and H. M. Oh (1998) Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnol. Tech. 12: 553–556.

    Article  CAS  Google Scholar 

  16. Geciova, J., D. Bury, and P. Jelen (2002) Methods for disruption of microbial cells for potential use in the dairy industry-a review. Int. Dairy J. 12: 541–553.

    Article  CAS  Google Scholar 

  17. Cravotto, G., L. Boffa, S. Mantegna, P. Ferego, M. Avogadro, and P. Cimas (2008) Improved extraction of vegetable oils under high-intensity ultrasound and /or microwaves. Ultrason. Sonochem. 15: 898–902.

    Article  CAS  Google Scholar 

  18. Virot, M., V. Tomao, C. Ginies, F. Visinoni, and F. Chemat (2008) Microwave-integrated extraction of total fats and oils. J. Chromatogr. A. (1196-1197): 57–64.

    Article  CAS  Google Scholar 

  19. Lee, J., C. Yoo, S. Jun, C. Ahn, and H. Oh (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour. Technol. 101: 575–577.

    Google Scholar 

  20. Chen, W., C. Zhang, L. Song, M. Sommerfeld, and Q. Hu (2009) A high throughput Nile Red method for quantitative measurement of neutral lipids in microalgae. J. Microbiol. Meth. 77: 41–47.

    Article  CAS  Google Scholar 

  21. Huang, G. H., G. Chen, and F. Chen (2009) Rapid screening method for lipid production in alga based on Nile red fluorescence. Biomass Bioenerg. 33: 1386–1392.

    Article  CAS  Google Scholar 

  22. Katsuragi, T, and Y. Tani (2000) Screening for microorganisms with specific characteristics by flow cytometry and single-cell sorting. J. Biosci. Bioeng. 89: 217–222.

    Article  CAS  Google Scholar 

  23. de la Jara, A., H. Mendoza, A. Martel, C. Molina, L. de la Nordstron, V. Rosa, R. Diaz (2003) Flow cytometric determination of lipid content in a marine dinoflagellate Crypthecodinium cohnii. J. Appl. Phycol. 15: 433–438.

    Article  Google Scholar 

  24. Binet, M. T. and J. L. Stauber (2006) Rapid flow cytometric method for the assessment of toxic dinoflagellate cyst viability. Mar. Env. Res. 62: 247–260.

    Article  CAS  Google Scholar 

  25. Guzman, H. M., A. de la Jara Valido, L. C. Duarte, and K. F. Presmanes (2010) Estimate by means of flow cytometry of variation in composition of fatty acids from Tetraselmis suecica in response to culture culture conditions. Aquacult. Int. 18: 189–199.

    Article  CAS  Google Scholar 

  26. Pereira, H., L. Barreira, A. Mozes, C. Mlorindo, C. Polo, C. V. Duarte, L. Custodio, and J. Varela (2011) Microplate-based high throughput screening procedure for the isolation of lipid-rich marine microalgae. Biotechnol. Biofuels 4:61.

    Article  CAS  Google Scholar 

  27. Yao, S., A. Brandt, E. Helge, and C. Gjermansen (2012) Neutral lipid accumulation at elevated temperature in conditional mutants of two microalgae species. Plant Physiol. Biochem. 61: 71–79.

    Article  CAS  Google Scholar 

  28. Doan, T. T. H. and J. P. Obbard (2012) Enhanced intracellular lipid in Nannochloropsis sp. via random mutagenesis and flow cytometric cell sorting. Algal Res. 1: 17–21.

    Article  CAS  Google Scholar 

  29. Roleda, M. Y., S. P. Slocombe, R. J. G. Leakey, J. G. Day, E. M. Bell, and M. S. Stanley (2013) Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy. Bioresour. Technol. 129: 439–449.

    Article  CAS  Google Scholar 

  30. Hyka, P., S. Lickova, P. Pribyl, K. Melzoch, and K. Kovar (2013) Flow cytometry for the development of biotechnological processes with microalgae. Biotechnol. Adv. 31: 2–16.

    Article  CAS  Google Scholar 

  31. Velmurugan, N., M. Sung, S. S. Yim, M. S. Park, J. W. Yang, and K. J. Jeong (2013) Evaluation of intracellular lipid bodies in Chlamydomonas reinhardtii strains by flow cytometry. Bioresour. Technol. 138: 30–37.

    Article  CAS  Google Scholar 

  32. Satpati, G. G. and R. Pal (2015) Rapid detection of neutral lipid in green microalgae by flow cytometry in combination with Nile red staining-an improved technique. Ann. Microbiol. 65: 937–949.

    Article  CAS  Google Scholar 

  33. Fakhry, E. M. and D. M. El Maghraby (2015) Lipid accumulation in response to nitrogen limitation and variation of temperature in Nannochloropsis salina. Bot. Stud. 56:6.

    Article  CAS  Google Scholar 

  34. Li, C., Y. Yu, D. Zhang, J. Liu, N. Ren, and Y. Feng (2014) Combined effects of carbon, phosphorus and nitrogen on lipid accumulation of Chlorella vulgaris in mixotrophic culture. J. Chem. Technol. Biotechnol. DOI 10.1002/jctb.4623.

    Google Scholar 

  35. Shah, S. M. U., C. C. Radziah, S. Ibrahim, F. Latiff, M. F. Othman, and M. A. Abdullah (2014) Effects of photoperiod, salinity and pH on cell growth and lipid content of Pavlova lutheri. Ann. Microbiol. 64: 157–164.

    Article  CAS  Google Scholar 

  36. Sasireka, G. and R. Muthuvelayudham (2015) Effect of salinity and iron stressed on growth and lipid accumulation In Skeletonema costatum for biodiesel production. Res. J. Chem. Sci. 5: 69–72.

    CAS  Google Scholar 

  37. Liu, Z. -Y., G. -C. Wang, and B. -C. Zhou (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour. Technol. 99: 4717–4722.

    Article  CAS  Google Scholar 

  38. Deng, X., X. Fei, and Y. Li (2011) The effects of nutritional restriction on neutral lipid accumulation in Chlamydomonas and Chlorella. African J. Microbiol. Res. 5: 260–270.

    CAS  Google Scholar 

  39. Praveenkumar, R., K. Shameera, G. Mahalakshmi, M. A. Akbarsha, and N. Thajuddin (2012) Influence of nutrient deprivation on lipid accumulation in a dominant indigenous microalga Chlorella sp., bum11008: Evaluation for biodiesel production. Biomass Bioenerg. 37: 60–66.

    Article  CAS  Google Scholar 

  40. Ruangsomboon, S. (2012) Effect of light, nutrient, cultivation time and salinity on lipid production of newly isolated strain of the green microalga, Botryococcus braunii KMITL 2. Bioresour. Technol. 109: 261–265.

    Article  CAS  Google Scholar 

  41. Concas, A., A. Steriti, M. Pisu, and G. Cao (2014) Comprehensive modeling and investigation of the effect of iron on the growth rate and lipid accumulation of Chlorella vulgaris cultured in batch photobioreactors. Bioresour. Technol. 153: 340–350.

    Article  CAS  Google Scholar 

  42. Zarrouk, C. (1966) Contribution a letude dune cyanophycee. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima. Ph.D Thesis, Universite de Paris.

    Google Scholar 

  43. Bold, H. C. (1949) The morphology of Chlamydomonas chlamydogama sp. nov. Bull. Torrey. Bot. Club. 76: 101–108.

    Article  Google Scholar 

  44. Dou, X., X. H. Lu, M. Z. Lu, L. S. Yu, R. Xue, and J. B. Ji (2013) The effects of trace elements on the lipid productivity and fatty acid composition of Nannochloropsis oculata. J. Renew. Energ. DOI: 10.1155/2013/671545.

    Google Scholar 

  45. Hu, Q. (2004) Environmental effects on cell composition. pp. 83–93. In: Richmond, A. (ed.). Handbook of Microalgal Culture: Biotechnology and applied phycology. Blackwell Science, Victoria, Australia.

    Google Scholar 

  46. Zhiyuan, L. and W. Guangce (2014) Effect of Fe3+ on the growth and lipid content of Isochrysis galbana. Chinese J. Oceanol. Limnol. 32: 47–53.

    Article  CAS  Google Scholar 

  47. Kean, M. A., E. Brons Delgado, B. P. Mensink, and M. H. J. Bugter (2015) Iron chelating agents and their effects on the growth of Pseudokirchneriella subcapitata, Chlorella vulgaris, Phaeodactylum tricornutum and Spirulina platensis in comparison to Fe-EDTA. J. Algal Biomass Utln. 6: 56–73.

    Google Scholar 

  48. Seenuvasan, M., K. S. Kumar, S. Abhinandan, C. Anugraha, K. Umamageshwari, M. A. Kumar, and N. Balaji (2014) Statistical analysis on stress induced lipid accumulation along with the major cell components of Chlorella sp. Int. J. Chem. Tech. Res. 6: 4186–4192.

    CAS  Google Scholar 

  49. Seenuvasan, M., P. K. Selvi, M. A. Kumar, J. Iyyappan, and K. S. Kumar (2014) Standardization of non-edible Pongamia pinnata oil methyl ester conversion using hydroxyl content and GC-MS analysis. J. Taiwan Inst. Chem. Eng. 45: 1485–1489.

    Article  CAS  Google Scholar 

  50. Cirulis, J. T., B. C. Strasser, J. A. Scott, and G. M. Ross (2012) Optimization of staining conditions for microalgae with three lipophilic dyes to reduce precipitation and fluorescence variability. Cytometry Part A 81A: 618–626.

    Article  CAS  Google Scholar 

  51. Cooksey, K. E., J. B. Guckert, S. Williams, and P. R. Callis (1987) Fluorometric determination of the neutral lipid content of microalgal cells using Nile Red. J. Microbiol. Method. 6: 333–345.

    Article  CAS  Google Scholar 

  52. Doan, T. T. Y. and J. P. Obbard (2011) Improved Nile Red staining of Nannochloropsis sp. J. Appl. Phycol. 23: 895–901.

    Article  CAS  Google Scholar 

  53. Guzman, H. M., A. de la Jara Valido, L. C. Duarte, and K.F. Presmanes (2011) Analysis of Intraspecific variation in relative fatty acid composition: Use of flow cytometry to estimate unsaturation index and relative polyunsaturated fatty acid content in microalgae. J. Appl. Phycol. 23: 7–15.

    Article  CAS  Google Scholar 

  54. Fuentes-Grunewald, C., E. Garces, E. Alacid, N. Sampedro, S. Rossi, and J. Camp (2012) Improvement of lipid production in the marine strains Alexandrium minutum and Heterosigma akashiwo by utilizing abiotic parameters. J. Ind. Microbiol. Biotechnol. 39: 207–216.

    Article  CAS  Google Scholar 

  55. Lopes da Silva, T., A. Reis, R. Medeiros, A. C. Oliveira, and L. Gouveia (2009) Oil production towards biofuel from autotrophic microalgae: a semicontinuous cultivations monitorized by flow cytometry. Appl. Biochem. Biotechnol. 159: 568–578.

    Article  CAS  Google Scholar 

  56. Davey, H. M. and D. B. Kell (1996) Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol. Rev. 60: 641–696.

    CAS  Google Scholar 

  57. Wang, Y., F. Hammes, K. De Roy, W. Verstraete, and N. Boon (2010) Past, present and future applications of flow cytometry in aquatic microbiology. Trends Biotechnol. 28: 416–424.

    Article  CAS  Google Scholar 

  58. Fuentes-Grunewald, C., E. Garces, S. Rossi, and J. Camp (2009) Use of dinoflagellate Karlodinium veneficum as a sustainable source of biodiesel production. J. Ind. Microbiol. Biotechnol. 36: 1215–1224.

    Article  CAS  Google Scholar 

  59. Farese, R. V. and T. C. Walther (2009) Lipid droplets finally get a little R-E-S-P-E-C-T. Cel. 139: 855–860.

    Article  CAS  Google Scholar 

  60. Xu, D., Z. Gao, F. Li, X. Fan, X. Zhang, N. Ye, S. Mou, C. Liang, and D. Li (2013) Detection and quantification of lipid in the microalga Tetraselmis subcordiformis (Wille) Butcher with BODIPY505/515 staining. Bioresour. Technol. 127: 386–390.

    Article  CAS  Google Scholar 

  61. Brennan, L., A. B. Fernandez, A. S. Mostaert, and P. Owende (2012) Enhancement of BODIPY505/515 lipid fluorescence method for applications in biofuel-directed microalgae production. J. Microbiol. Method. 90: 137–143.

    Article  CAS  Google Scholar 

  62. Yeesang, C. and B. Cheirsilp (2011) Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresour. Technol. 102: 3034–3040.

    Article  CAS  Google Scholar 

  63. Fan, J., Y. Cui, M. Wan, W. Wang, and Y. Li (2014) Lipid accumulation and biosynthesis genes response of the Oleaginous Chlorella pyrenoidosa under three nutritional stressors. Biotechnol. Biofuels 7: 17.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruma Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satpati, G.G., Mallick, S.K. & Pal, R. An alternative high-throughput staining method for detection of neutral lipids in green microalgae for biodiesel applications. Biotechnol Bioproc E 20, 1044–1055 (2015). https://doi.org/10.1007/s12257-015-0281-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0281-z

Keywords

Navigation