Skip to main content
Log in

The effect of CO2 and salinity on the cultivation of Scenedesmus obliquus for biodiesel production

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Biodiesel is a renewable and environmental friendly energy source that can be produced via tranesterification from various oil crops such as soy bean, sunflower, palm, and algae. In this work, the microalgae Scenedesmus obliquus, S. armatus and S. bernadii, isolated from natural water basins, were enriched in modified Chu 13 medium. Only S. obliquus showed significant oil accumulation and was thus further cultivated in 3 L tubular photo-reactors under mixotrophic conditions (16:8 h light-dark cycle) at room temperature and varying CO2 (5, 10, and 15%) supply. The results indicated that S. obliquus can be grown under various CO2 concentrations. A maximum biomass of 2.3 g/L was achieved when 15% CO2 was used. The effect of salinity on oil storage was also considered, using sodium chloride (NaCl) solutions of varying concentrations (0.05, 0.2, and 0.3 M). Higher lipid contents were found in cells that were subjected to salt stress compared to those in conditions without salt stress. A maximum oil accumulation of 36% was observed within 15 days at 0.3 M NaCl. A biodiesel yield of up to 97.4% was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Olaizola, M. (2003) Microalgal removal of CO2 from flue gases: Changes in medium pH and flue gas composition do not appear to affect the photochemical yield of microalgal cultures. Biotechnol. Bioproc. Engin. 8: 360–367.

    Article  CAS  Google Scholar 

  2. Yue, L. and W. Chen (2005) Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae. Ener. Conver. Manage. 46: 1868–1876.

    Article  CAS  Google Scholar 

  3. Chisti, Y. (2007) Biodiesel from microalgae. Biotechnol. Adv. 25: 294–306.

    Article  CAS  Google Scholar 

  4. Gouveia, L. and A. C. Oliveira (2009) Microalgae as raw material for biofuels production. J. Ind. Microbiol. Biotechnol. 36: 269–274.

    Article  CAS  Google Scholar 

  5. Kalacheva, G. S., N. O. Zhila, and T. G. Volova (2002) Lipid and hydrocarbon compositions of a collection strain and a wild sample of the green microalga Botryococcus. Aqua. Ecol. 36: 317–330.

    Article  CAS  Google Scholar 

  6. Metzger, P. and C. Largeau (2005) Botryococcus braunii: A rich source for hydrocarbonsand related ether lipids. Appl. Microbiol. Biotechnol. 66: 486–496.

    Article  CAS  Google Scholar 

  7. Negoro, M., N. Shioji, K. Miyamoto, and Y. Miura (1991) Growth of microalgae in high CO2 gas and effects of sox and nox. Appl. Biochem. Biotechnol. 28–29: 877–886.

    Article  Google Scholar 

  8. Watanabe, Y., N. Ohmura, and H. Saiki (1992) Isolation and determination of cultural characteristics of microalgae which functions under CO2 enriched atmosphere. Ener. Conver. Manage. 33: 545–552.

    Article  CAS  Google Scholar 

  9. Kodama, M., H. Ikemoto, and S. Miyachi (1993) A new species of highly CO2-tolerant fast growing marine microalga suitable for high density culture. J. Marine Biotechnol. 1: 21–25.

    Google Scholar 

  10. Rao, A. R., C. Dayananda, R. Sarada, T. R. Shamala, and G. A. Ravishankar (2007) Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Biores. Technol. 98: 560–564.

    Article  CAS  Google Scholar 

  11. Wang, Z. T., N. Ullrich, S. Joo, S. Waffenschmidt, and U. Goodenough (2009) Algal lipid bodies: Stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Euka. Cell. 8: 1856–1868.

    Article  CAS  Google Scholar 

  12. Fitter, H. and R. Hay (2002) Environmental physiology of plants. 3rd ed. Academic Press, London, UK.

    Google Scholar 

  13. Yeo, A. (1998) Molecular biology of salt tolerance in the context of whole-plant physiology. J. Exp. Botany 49: 915–929.

    CAS  Google Scholar 

  14. Largeau, C., E. Casadevall, C. Berkaloff, and P. Dhamelincourt (1980) Sites of accumulation and composition of hydrocarbons in Botryococcus braunii. Phytochemis. 19: 1043–1051.

    Article  CAS  Google Scholar 

  15. Burdon, K. L. (1946) Fatty material in bacteria and fungi revealed by staining dried, fixed slide preparations. J. Bacteriol. 52: 665–667.

    CAS  Google Scholar 

  16. Ceron Garcia, M. C., A. Sanchez Miron, J. M. Fernandez Sevilla, E. Molina Grima, and F. Garcia Camacho (2005) Mixotrophic growth of the microalga Phaeodactylum tricornutum. Influence of different nitrogen and organic carbon sources on productivity and biomass composition. Proc. Biochem. 40: 297–305.

    Article  CAS  Google Scholar 

  17. Griffiths, M. J., C. Garcin, R. P. van Hille, and S. T. L. Harrison (2011) Interference by pigment in the estimation of microalgal biomass concentration by optical density. J. Microbiol. Methods 85: 119–123.

    Article  CAS  Google Scholar 

  18. Cheng, K. C., J. M. Catchmark, and A. Demirci (2009) Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J. Biol. Eng. 3: 1–10.

    Article  CAS  Google Scholar 

  19. Glazyrina, J., M. Krause S. Junne, F. Glauche, D. Strom, and P. Neubauer (2011) Glucose-limited high cell density cultivations from small to pilot plant scale using an enzyme-controlled glucose delivery system. New Biotechnol. 29: 235–242.

    Article  Google Scholar 

  20. Liu, B. and Z. Zhao (2007) Biodiesel production by direct methanolysis of oleaginous microbial biomass. J. Chem. Technol. Biotechnol. 82: 775–780.

    Article  CAS  Google Scholar 

  21. Richmond, A. (2004) Handbook of microalgal culture: Biotechnology and applied phycology. Blackwell Science Ltd.

  22. Chinnasamy, S., A. Bhatnagar, R. W. Hunt, and K. C. Das (2010) Microlagae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour. Technol. 101: 3097–3105.

    Article  CAS  Google Scholar 

  23. Kodama, M., H. Ikemoto, and S. Miyachi (1993) A new species of highly CO2-tolerant fast-growing marine microalga suitable for high-density culture. J. Marine Biotechnol. 1: 21–25.

    Google Scholar 

  24. Yue, L. and W. Chen (2005) Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae. Energy Conv. Manage. 46: 1846–1896.

    Article  Google Scholar 

  25. Ho, S. H., W. M. Chen, and J. S. Chang (2010) Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresour. Technol. 101: 8725–8730.

    Article  CAS  Google Scholar 

  26. de Morais, M. G. and J. A. V. Costa (2007) Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three stage serial tubular photobioreactor. J. Biotechnol. 129: 439–445.

    Article  Google Scholar 

  27. Sanchez, F, J. M. Fernández, F. G. Acien, A. Rueda, J. Perez-Parra, and E. Molina (2008) Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Proc. Biochem. 43: 398–405.

    Article  CAS  Google Scholar 

  28. Hasegawa, P. M., R. A. Bressan, J. K. Zhu, and H. J. Bohnert (2000) Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 463–499.

    Article  CAS  Google Scholar 

  29. Ning, S. B., H. L. Guo, L. Wang, and Y. C. Song (2002) Salt stress induces programmed cell death in prokaryotic organism Anabaena. J. Appl. Microbiol. 93: 15–28.

    Article  CAS  Google Scholar 

  30. Huh, G. H., B. Damsz, T. K. Matsumoto, M. P. Reddy, A. M. Rus, J. I. Ibeas, M. L. Narasimhan, R. A. Bressan, and P. M. Hasegawa (2002) Salt causes ion disequilibrium-induced programmed cell death in yeast and plants. The Plant J. 29: 649–659.

    Article  CAS  Google Scholar 

  31. Affenzeller, M. J., A. Darehshouri, A. Andosch, C. Lütz, and U. Lütz-Meindl (2009) Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata. J. Exp. Bot. 60: 939–954.

    Article  CAS  Google Scholar 

  32. Takagi, M., Karseno, and T. Yoshida (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J. Biosci. Bioeng. 101: 223–226.

    Article  CAS  Google Scholar 

  33. Miao, X. and Q. Wu (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 97: 841–846.

    Article  CAS  Google Scholar 

  34. Tang, D., W. Han P. Li, X. Miao, and J. Zhong (2011) CO2 biofixaton and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour. Technol. 102: 3071–3076.

    Article  CAS  Google Scholar 

  35. Knothe, G. H. (2009) Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ. Sci. 2: 759–766.

    Article  CAS  Google Scholar 

  36. Chen, Y., B. Xiao, J. Chang, Y. Fu, P. Lv, and X. Wang (2009) Synthesis of biodiesel from waste cooking oil using immobilized lipase in fixed bed reactor. Ener. Conv. Manage. 50: 668–673.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TzeYen Chiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaewkannetra, P., Enmak, P. & Chiu, T. The effect of CO2 and salinity on the cultivation of Scenedesmus obliquus for biodiesel production. Biotechnol Bioproc E 17, 591–597 (2012). https://doi.org/10.1007/s12257-011-0533-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0533-5

Keywords

Navigation