Skip to main content
Log in

Rapid detection of neutral lipid in green microalgae by flow cytometry in combination with Nile red staining—an improved technique

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

A staining protocol for rapid in situ detection of neutral lipid using flow cytometry in combination with Nile red staining was optimized. Staining efficiency was tested in terms of fluorescence intensity (% grandparent) in varied concentrations of Nile red and dimethyl sulfoxide (DMSO), with variable incubation period, temperature and pH level. The improved method was tested using two microalgae: Chlorella ellipsoidea and Chlorococcum infusionum. Maximum staining efficiency was recorded with a concentration of 5 μg mL−1 Nile red and 40 % DMSO in a 15-min incubation at 40 °C for both taxa (pH 6.5). The forward (FSC) and side scatter (SSC) two-dimensional dot plot showed highly scattered cells containing neutral lipid. The coefficient of variation, standard deviation, mean and median values were determined for quantification of neutral lipid. We also applied this modified method to detect the elevated level of neutral lipid in nitrate (NaNO3)-depleted cells; the efficiency of this technique was justified indicating a prominent 3- to 4-fold increase in neutral lipid in treated cells. Confocal images of stained cells also revealed accumulation of high levels of neutral lipid in treated microalgal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–d
Fig. 3a–d
Fig. 4a–d
Fig. 5
Fig. 6a–d

Similar content being viewed by others

References

  • Bellou S, Aggelis G (2012) Biochemical activities in Chlorella sp. and Nannochloropsis salina during lipid and sugar synthesis in a lab-scale open pond simulating reactor. J Biotechnol 164:318–329

    Article  CAS  PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method for total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Bold HC (1949) The morphology of Chlamydomonas chlamydogama sp. nov. Bull Torrey Bot Club 76:101–108

    Article  Google Scholar 

  • Brennan L, Fernandez AB, Mostaert AS, Owende P (2012) Enhancement of BODIPY505/515 lipid fluorescence method for applications in biofuel-directed microalgae production. J Microbiol Methods 90:137–143

    Article  CAS  PubMed  Google Scholar 

  • Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2012) The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour Technol 124:217–226

    Article  CAS  PubMed  Google Scholar 

  • Carvalho AP, Malcata FX (2005) Optimization of ω-3 fatty acid production by microalgae: crossover effects of CO2 and light intensity under batch and continuous cultivation modes. Mar Biotechnol 7:381–388

    Article  CAS  PubMed  Google Scholar 

  • Chen GQ, Jiang Y, Chen F (2008) Salt-induced alterations in lipid composition of diatom Nitzschia laevis (bacillariophyceae) under hetertrophic culture condition. J Phycol 44:1309–1314

    Article  CAS  Google Scholar 

  • Chen W, Zhang C, Song L, Sommerfeld M, Hu Q (2009) A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Methods 77:41–47

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Chu FF, Chu PN, Shen XF, Lam PKS, Zeng RJ (2014) Effect of phosphorous on biodiesel production from Scenedesmus obliquus under nitrogen-deficiency stress. Bioresour Technol 152:241–246

    Article  CAS  PubMed  Google Scholar 

  • Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48:1146–1151

    Article  CAS  Google Scholar 

  • Cooksey KE, Guckert JB, Williams SA, Collins PR (1987) Fluorometric determination of the neutral lipid content of microalgal cells using Nile red. J Microbiol Methods 6:333–345

    Article  CAS  Google Scholar 

  • Cooper MS, Hardin WR, Petersen TW, Cattolico RA (2010) Visualizing “green oil” in live algal cells. J Biosci Bioeng 109:198–201

    Article  CAS  PubMed  Google Scholar 

  • Cravotto G, Boffa L, Mantegna S, Ferego P, Avogadro M, Cimas P (2008) Improved extraction of vegetable oils under high-intensity ultrasound and /or microwaves. Ultrason Sonochem 15:898–902

    Article  CAS  PubMed  Google Scholar 

  • Day JG, Benson EE, Fleck RA (1999) In vitro culture and conservation of microalgae: applications for aquaculture, biotechnology and environmental research. In Vitro Cell Dev Biol 35:127–136

    Article  CAS  Google Scholar 

  • de la Jara A, Mendoza H, Martel A, Molina C, Nordstron L, de la Rosa V, Diaz R (2003) Flow cytometric determination of lipid content in a marine dinoflagellate, Crypthecodinium cohnii. J Appl Phycol 15:433–438

    Article  Google Scholar 

  • Doan TTY, Obbard JP (2011a) Improved Nile red staining of Nannochloropsis sp. J Appl Phycol 23:895–901

    Article  CAS  Google Scholar 

  • Doan TTY, Obbard JP (2011b) Enhanced lipid production in Nannochloropsis sp. using fluorescence-activated cell sorting. GCB Bioenerg 3:264–270

    Article  CAS  Google Scholar 

  • Doan TTY, Obbard JP (2012) Enhanced intracellular lipid in Nannochloropsis sp. via random mutagenesis and flow cytometric cell sorting. Algal Res 1:17–21

    Article  CAS  Google Scholar 

  • Elsey D, Jameson D, Raleigh B, Cooney MJ (2007) Fluorescent measurement of microalgal neutral lipids. J Microbiol Methods 68:639–642

    Article  CAS  PubMed  Google Scholar 

  • Engler CR (1985) Disruption of microbial cells. In: Moo-Yoong M (ed) Comprehensive biotechnology, 2nd edn. Pergamon , Oxford, pp 305–324

  • Feng P, Deng Z, Fan L, Hu Z (2012) Lipid accumulation and growth characteristics of Chlorella zofingiensis under different nitrate and phosphate concentration. J Biosci Bioeng 114(4):405–410

    Article  CAS  PubMed  Google Scholar 

  • Forjan E, Garbayo I, Henriques M, Rocha J, Vega J, Vilchez C (2011) UV-A mediated modulation of photosynthetic efficiency, xanthophylls cycle and fatty acid production of Nannochloropsis. Mar Biotechnol 13:366–375

    Article  CAS  PubMed  Google Scholar 

  • Geciova J, Bury D, Jelen P (2002) Methods for disruption of microbial cells for potential use in the dairy industry—a review. Int Dairy J 12:541–553

    Article  CAS  Google Scholar 

  • Goodson C, Roth R, Wang ZT, Goodenough U (2011) Structural correlates of cytoplasmic and chloroplast lipid body synthesis in Chlamydomonas reinhardtii and stimulation of lipid body production with acetate boost. Eukaryot Cell 10:1592–1606

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Griffiths M, Harrison S (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186

    Article  CAS  PubMed  Google Scholar 

  • Guzman HM, de la Jara VA, Duarte LC, Presmanes KF (2011) Analysis of interspecific variation in relative fatty acid composition: use of flow cytometry to estimate unsaturation index and relative polyunsaturated fatty acid content in microalgae. J Appl Phycol 23:7–15

    Article  CAS  Google Scholar 

  • Halim R, Danquah MK, Webley PA (2012) Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv 30:709–732

    Article  CAS  PubMed  Google Scholar 

  • Hsieh CH, Wu WT (2009) Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour Technol 100:3921–3926

    Article  CAS  PubMed  Google Scholar 

  • Hu Q (2006) PSA abstracts. J Phycol 42:1–48

    Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  PubMed  Google Scholar 

  • Huang GH, Chen G, Chen F (2009) Rapid screening method for lipid production in alga based on Nile red fluorescence. Biomass Bioenerg 33:1386–1392

    Article  CAS  Google Scholar 

  • Hyka P, Lickova S, Pribyl P, Melzoch K, Kovar K (2013) Flow cytometry for the development of biotechnological processes with microalgae. Biotechnol Adv 31:2–16

    Article  CAS  PubMed  Google Scholar 

  • Illman AM, Scragg AH, Shales SW (2000) Increase in CC. strains calorific values when grown in low nitrogen medium. Enzyme Microb Technol 27:631–635

    Article  CAS  PubMed  Google Scholar 

  • Izard J, Limberger RJ (2003) Rapid screening method for quantification of bacterial cell lipids from whole cells. J Microbiol Methods 55:411–418

    Article  CAS  PubMed  Google Scholar 

  • Karemore A, Pal R, Sen R (2013) Strategic enhancement of algal biomass and lipid in Chlorococcum infusionum as bioenergy feedstock. Algal Res 2:113–121

    Article  Google Scholar 

  • Khotimchenko SV, Yakovleva IM (2005) Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry 66:73–79

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Yoon BD, Oh HM (1998) Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnol Technol 12:553–556

    Article  CAS  Google Scholar 

  • Lee JY, Yoo C, Jun SY, Ahn CY, Oh HM (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101:575–577

    Google Scholar 

  • Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleabundans. Appl Microbiol Biotechnol 81:629–636

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Han D, Hu G, Sommerfeld M, Hu Q (2010) Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol Bioeng 107:258–268

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Beardall J, Heraud P (2006) Effect of uv radiation on growth, chlorophyll fluorescence and fatty acid composition of Phaeodactylum tricornutum and Chaetoceros muelleri (bacillariophyceae). Phycologia 45:605–615

    Article  Google Scholar 

  • Liu A, Chen W, Zheng L, Song L (2011) Identification of high lipid producers for biodiesel production from forty-three green algal isolates in China. Prog Nat Sci Mater Int 21:269–276

    Article  Google Scholar 

  • Mahesar SA, Sherazi STH, Abro K, Kandhro A, Bhanger MI, Van de Voort FR, Sedman J (2008) Application of microwave heating for the fast extraction of fat content from the poultry feeds. Talanta 75:1240–1244

    Article  CAS  PubMed  Google Scholar 

  • Mandotra SK, Kumar P, Suseela MR, Ramteke PW (2014) Fresh water green microalgae Scenedesmus abundans: A potential feedstock for high quality biodiesel production. Bioresour Technol 156:42–47

    Article  CAS  PubMed  Google Scholar 

  • Matthew T, Zhou W, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A, Kruse O, Hankamer B, Marx UC, Smith SM (2009) The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion. J Biol Chem 284:23415–23425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pancha I, Chokshi K, George B, Ghosh T, Paliwal C, Maurya R, Mishra S (2014) Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresour Technol 156:146–154

    Article  CAS  PubMed  Google Scholar 

  • Praveenkumar R, Shameera K, Mahalakshmi G, Akbarsha MA, Thajuddin N (2012) Influence of nutrient deprivations on lipid accumulation in a dominant indigenous microalga Chlorella sp., bum 110088: Evaluation for biodiesel production. Biomass Bioenerg 37:60–66

    Article  CAS  Google Scholar 

  • Radakovits R, Jinkers RE, Darzins A, Posewityz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rajvanshi S, Sharma MP (2012) Micro algae: a potential source of biodiesel. J Sust Bioenerg Syst 2:49–59

    Article  CAS  Google Scholar 

  • Reitan KI, Rainuzzo JR, Olsen Y (1994) Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J Phycol 30:972–979

    Article  CAS  Google Scholar 

  • Renaud SM, Thinh LV, Lambrinidis G, Parry DL (2002) Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211:195–214

    Article  CAS  Google Scholar 

  • Santos AM, Janseen M, Lamers PP, Wijffels RH (2013) Biomass and lipid productivity of Neochloris oleoabundans under alkaline-saline conditions. Algal Res 2:204–211

    Article  Google Scholar 

  • Sato N, Hagio M, Wada H, Tsuzuki AM (2000) Environmental effects on acidic lipids of thylakoid membranes. Biochem Soc Trans 28:912–914

    Article  CAS  PubMed  Google Scholar 

  • Sharma KK, Schuhmann H, Schenk M (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532–1553

    Article  CAS  Google Scholar 

  • Sun X, Cao Y, Xu H, Liu Y, Sun J, Qiao D, Cao Y (2014) Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Bioresour Technol 155:204–212

    Article  CAS  PubMed  Google Scholar 

  • Takagi M, Yoshida T (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng 101:223–226

    Article  CAS  PubMed  Google Scholar 

  • Velmurugan N, Sung M, Yim SS, Park MS, Yang JW, Jeong KJ (2013) Evaluation of intracellular lipid bodies in Chlamydomonas reinhardtii strains by flow cytometry. Bioresour Technol 138:30–37

    Article  CAS  PubMed  Google Scholar 

  • Virot M, Tomao V, Ginies C, Visinoni F, Chemat F (2008) Microwave-integrated extraction of total fats and oils. J Chromatogr A 1196–1197:57–64

    Article  PubMed  Google Scholar 

  • Xu D, Gao Z, Li F, Fan X, Zhang X, Ye N, Mou S, Liang C, Li D (2013) Detection and quantification of lipid in the microalga Tetraselmis subcordiformis (Wille) Butcher with BODIPY505/515 staining. Bioresour Technol 127:386–390

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Li X, Hu H, Zhang X, Yu Y, Chen Y (2011) Growth and lipid accumulation properties of a freshwater microalgae, Chlorella ellipsoidea YJ1 in domestic secondary effluents. Appl Energy 88(10):3295–3299

    Article  CAS  Google Scholar 

  • Yao S, Brandt A, Egsgaard H, Gjermansen C (2012) Neutral lipid accumulation at elevated temperature in conditional mutants of two microalgae species. Plant Physiol Biochem 61:71–79

    Article  CAS  PubMed  Google Scholar 

  • Yeh KL, Chang JS (2011) Nitrogen starvation strategies and photobioreactor design for enhancing lipid production of a newly isolated microalga Chlorella vulgaris esp-31: Implications for biofuels. Biotechnol J 6:1358–1366

    Article  CAS  PubMed  Google Scholar 

  • Zarrouk C (1966) Contribution a letude dune cyanophycee. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima. PhD Thesis, University of Paris.

  • Zhu LY, Zhang XC, Ji L, Song XJ, Kuang CH (2007) Changes of lipid content and fatty acid composition of Schizochytrium limacium in response to different temperatures and salinities. Process Biochem 42:210–214

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The above study was supported by the New Millennium Indian Technology Leadership Initiative-Council of scientific and Industrial Research (NMITLI-CSIR) and the Department of Science and Technology (DST), New Delhi (India). The authors are thankful to Dr. Sanjaya K. Mallick for his guidance in flow cytometric analysis. The authors are also grateful to the Center for Research in Nanoscience and Nanotechnology (CRNN), University of Calcutta, for instrumental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruma Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satpati, G.G., Pal, R. Rapid detection of neutral lipid in green microalgae by flow cytometry in combination with Nile red staining—an improved technique. Ann Microbiol 65, 937–949 (2015). https://doi.org/10.1007/s13213-014-0937-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-014-0937-5

Keywords

Navigation