Skip to main content
Log in

Chemical composition, saccharification yield, and the potential of the green seaweed Ulva pertusa

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Recently, seaweeds have gained attention as possible renewable sources for biofuel and bioproduct production. To investigate the possibility of using green seaweeds as biomass feedstocks, the chemical composition and saccharification yield of the green seaweed Ulva pertusa were investigated. In this study, we evaluated U. pertusa that was harvested from the seashore in Jeju Island, Korea. By proximate composition analysis, dried U. pertusa was found to contain 52.3% carbohydrate, 25.1% protein, 0.1% lipid, and 22.5% ash. The elemental analysis of U. pertusa indicated the content of carbon to be 34.9%, hydrogen 5.3%, oxygen 46.5%, nitrogen 3.8%, sulfur 3.1%, and phosphorous 0.12%. The optimal conditions for the acid hydrolysis and saccharification of U. pertusa were investigated by varying the types of catalysts, catalyst concentration, reaction time, reaction temperature, and seaweed concentration. Under optimized acid hydrolysis condition, 32.9% of seaweed was recovered as monosaccharides and the monosaccharide composition was 11.5% D-glucuronic acid and D-glucuronic acid lactone, 11.1% L-rhamnose, 6.7% D-glucose, and 3.7% D-xylose. The concept of degree of reductance was introduced to assess the potential of U. pertusa as an industrial feedstock. It was found that the degree of reductance of U. pertusa was lowest among the biomass considered in this study. Based on the comparison of chemical composition and reductance degree of various biomass resources, the competitiveness of U. pertusa as a biomass feedstock for biofuel and bioproduct production was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cherubini, F. (2010) The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Ene. Convers. Manage. 51: 1412–1421.

    Article  CAS  Google Scholar 

  2. Perlack, R. D., L. L. Wright, A. F. Turhollow, R. L. Graham, B. J. Stokes, and D. C. Erbach (2005) Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply. Oak Ridge National Laboratory. Oak Ridge, TN, USA.

    Book  Google Scholar 

  3. Roesijadi, G., S. B. Jones, L. J. Snowden-Swan, and Y. Zhu (2010) Macroalgae as a Biomass Feedstock: A Preliminary Analysis. Pacific Northwest National Laboratory, Richland, WA, USA.

    Book  Google Scholar 

  4. Zhao, J., P. Jiang, N. Li, J. Wang, Z. Liu, and S. Qin (2010) Analysis of genetic variation within and among Ulva pertusa (Ulvaceae, Chlorophyta) populations using ISSR markers. Chin. Sci. Bull. 55: 705–711.

    Article  CAS  Google Scholar 

  5. Korea Food and Drug Administration (KFDA) (2009) Food Code. KFDA, Seoul, Korea.

    Google Scholar 

  6. Miao, Z., T. E. Grift, A. C. Hansen, and K. C. Ting (2011) Energy requirement for comminution of biomass in relation to particle physical properties. Ind. Crop. Prod. 33: 504–513.

    Article  CAS  Google Scholar 

  7. Marinho-Soriano, E., P. C. Fonseca, M. A. A. Carneiro, and W. S. C. Moreira (2006) Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour. Technol. 97: 2402–2406.

    Article  CAS  Google Scholar 

  8. Rural Development Administration (2007) Food Composition Table. 7th ed., pp. 328–335. Jeonju, Korea.

    Google Scholar 

  9. Matanjun, P., S. Mohamed, N. M. Mustapha, and K. Muhammad (2009) Nutrient content of tropical edible seaweeds, Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum. J. Appl. Phycol. 21: 75–80.

    Article  CAS  Google Scholar 

  10. Leung, W. T. W., R. R. Butrum, and F. H. Chang (1972) Food Composition Table for Use in East Asia. Part I Proximate Composition, Mineral and Vitamin Contents of East Asian Foods. United Nations Food and Agriculture Organization, Rome, Italy.

    Google Scholar 

  11. Do, J. R., Y. J. Nam, J. H. Park, and J. H. Jo (1997) Studies on chemical composition of red algae. J. Kor. Fish. Soc. 30: 428–431.

    CAS  Google Scholar 

  12. Montville, J. B., J. K. C. Ahuja, L. A. Ingwersen, E. S. Haggerty, C. W. Enns, and B. P. Perloff (2006) USDA food and nutrient database for dietary studies: Released on the web. J. Food Compos. Anal. 19: S100–S107.

    Article  Google Scholar 

  13. Fayaz. M., K. K. Namitha, K. N. C. Murthy, M. M. Swamy, R. Sarada, S. Khanam, P. V. Subbarao, and G. A. Ravishankar (2005) Chemical composition, iron bioavailability, and antioxidant activity of Kappaphycus alvarezzi (Doty). J. Agric. Food Chem. 53: 792–797.

    Article  CAS  Google Scholar 

  14. Denis, C., M. Morançais, M. Li, E. Deniaud, P. Gaudin, G. Wielgosz-Collin, G. Barnathan, P. Jaouen, and J. Fleurence (2010) Study of the chemical composition of edible red macroalgae Grateloupia turuturu from Brittany (France). Food Chem. 119: 913–917.

    Article  CAS  Google Scholar 

  15. Wong, K. H. and P. C. K. Cheung (2000) Nutritional evaluation of some subtropical red and green seaweeds: Part I- proximate composition, amino acid profiles and some physico-chemical properties. Food Chem. 71: 475–482.

    Article  CAS  Google Scholar 

  16. Yu, L. J., S. Wang, X. M. Jiang, N. Wang, and C. Q. Zhang (2008) Thermal analysis studies on combustion characteristics of seaweed. J. Therm. Anal. Calorim. 93: 611–617.

    Article  CAS  Google Scholar 

  17. Garivait, S., U. Chaiyo, S. Patumsawad, and J. Deakhuntod (2006) Physical and chemical properties of Thai biomass fuels from agricultural residues. Proceeding of the 2nd Joint International Conference on Sustainable Energy and Environment. November 1–23. Bangkok, Thailand.

    Google Scholar 

  18. Jablonski, W., K. R. Gaston, M. R. Nimlos, D. L. Carpenter, C. J. Feik, and S. D. Phillips (2009) Pilot-scale gasification of corn stover, switchgrass, wheat straw, and wood: 2. Identification of global chemistry using multivariate curve resolution techniques. Ind. Eng. Chem. Res. 48: 10691-10701.

  19. Naik, S., V. V. Goud, P. K. Rout, K. Jacobson, and A. K. Dalai (2010) Characterization of Canadian biomass for alternative renewable biofuel. Renew. Energ. 35: 1624-1631.

  20. Lahaye, M. and A. Robic (2007) Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromol. 8: 1765-1774.

  21. Praiboon, J., A. Chirapart, Y. Akakabe, O. Bhumibhamond and T. Kajiwara (2006) Physical and chemical characterization of agar polysaccharides extracted from the Thai and Japanese species of Gracilaria. Sci. Asia 32: 11–17.

    Article  Google Scholar 

  22. Zhang, J., Q. Zhang, J. Wang, X. Shi, and Z. Zhang (2009) Analysis of the monosaccharide composition of fucoidan by precolumn derivation HPLC. Chin. J. Oceanol. Limn. 27: 578–582.

    Article  CAS  Google Scholar 

  23. Hwang, E. K., H. Amano, and C. S. Park (2008) Assessment of the nutritional value of Capsosiphon fulvescens (Chlorophyta): Developing a new species of marine macroalgae for cultivation in Korea. J. Appl. Phycol. 20: 147–151.

    Article  CAS  Google Scholar 

  24. Ruperez, P. (2002) Mineral content of edible marine seaweeds. Food Chem. 79: 23–26.

    Article  CAS  Google Scholar 

  25. Lourence, S. O., E. Barbarino, J. C. De-Paula, L. O. D. S. Pereira, and U. M. L. Marquez (2002) Amino acid composition, protein content and calculation of nitrogen-to-protein conversion factors for 19 tropical seaweeds. Phycol. Res. 50: 233–241.

    Article  Google Scholar 

  26. Jung, K. J., C. H. Jung, J. H. Pyeun, and Y. J. Choi (2005) Changes of food components in Mesangi (Capsosiphon fulvecense), Gashiparae (Enteromorpha prolifera), and Cheonggak (Codium fragile) Depending on Harvest Times. J. Kor. Soc. Food Sci. Nutr. 34: 687–693.

    Article  CAS  Google Scholar 

  27. Imai, Y. and Y. Hirasaka (1960) The equilibrium between glucuronic acid and its lactone. Yakugaku Zasshi 80: 1139-1142.

  28. Biermann, C. J. and G. D. McGinnis (1989) Analysis of Carbohydrates by GLC and MS. p. 6. CRC Press, NY, USA.

    Google Scholar 

  29. Mosier, N. S., C. M. Ladisch, and M. R. Ladisch (2002) Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation. Biotechnol. Bioeng. 79: 610–618.

    Article  CAS  Google Scholar 

  30. Lee, S. Y., J. W. Ahn, H. J. Hwang, and S. B. Lee (2011) Seaweed biomass resources in Korea. KSBB J. 26: 267–276.

    Article  Google Scholar 

  31. Shuler, M. L. and F. Kargi (2002) Bioprocess Engineering: Basic Concepts. 2nd ed., pp. 211-214. Prentice-Hall Inc., NJ, USA.

  32. Choi, W. Y., D.-H. Kang, and H.-Y. Lee (2013) Enhancement of the saccharification yields of Ulva pertusa Kjellmann and rape stems by the high-pressure steam pretreatment process. Biotechnol. Bioproc. Eng. 18: 728–735.

    Article  CAS  Google Scholar 

  33. Lee, S. B., S. J. Cho, J. A. Kim, S. Y. Lee, S. M. Kim, and H. S. Lim (2014) Metabolic pathway of 3,6-anhydro-L-galactose in agar-degrading microorganisms. Biotechnol. Bioproc. Eng. 19: 866–878.

    Article  CAS  Google Scholar 

  34. Hwang, H. J., S. Y. Lee, S. M. Kim, and S. B. Lee (2011) Fermentation of seaweed sugars by Lactobacillus species and the potential of seaweed as a biomass feedstock. Biotechnol. Bioproc. Eng. 16: 1231–1239.

    Article  CAS  Google Scholar 

  35. Hwang, H. J., S. M. Kim, J. H. Chang, and S. B. Lee (2012) Lactic acid production from seaweed hydrolysate of Enteromorpha prolifera (Chlorophyta). J. Appl. Phycol. 24: 935–940.

    Article  CAS  Google Scholar 

  36. Werpy, T. and G. Petersen (2004). Top Value Added Chemicals from Biomass. Volume 1, U.S. Department of Energy, Washington DC, USA.

  37. Ahn, J. W., S. Y. Lee, S. Kim, S. M. Kim, S. B. Lee, and K. J. Kim (2011) Crystal structure of glucuronic acid dehydrogenase from Chromohalobacter salexigens, Proteins 80: 314–318.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Bok Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.Y., Chang, J.H. & Lee, S.B. Chemical composition, saccharification yield, and the potential of the green seaweed Ulva pertusa . Biotechnol Bioproc E 19, 1022–1033 (2014). https://doi.org/10.1007/s12257-014-0654-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0654-8

Keywords

Navigation