Skip to main content
Log in

Enhancing the carbon flux and NADPH supply to increase L-isoleucine production in Corynebacterium glutamicum

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Our previous work has shown that L-isoleucine production in Corynebacterium glutamicum IWJ001 could be increased by overexpressing ilvA1 encoding a feedback-resistant threonine dehydratase, ilvBN1 encoding a feedback-resistant acetohydroxy acid synthase, lrp encoding the global regulator Lrp, brnFE encoding the two-component export system BrnFE, or ppnk1 encoding NAD kinase. The main purpose of this study is to further increase the L-isoleucine production in C. glutamicum IWJ001 by overexpressing the above genes in various combinations. Several C. glutamicum strains IWJ001/pDXW-8-ppnk1-lrp-brnFE, IWJ001/pDXW-8-ilvBN1-ilvA1-lrp-brnFE, IWJ001/pDXW-8-ilvBN1-ilvA1-ppnk1, and IWJ001/pDXW-8-ppnk1-ilvBN1-ilvA1-lrp-brnFE were constructed, and L-isoleucine production and activities of several key enzymes in these strains were analyzed. Compared with the control strain IWJ001/pDXW-8, L-isoleucine production increased in all of the four strains. IWJ001/pDXW-8-ilvBN1-ilvA1-ppnk1 showed the highest L-isoleucine production and produced 32.3 g/L L-isoleucine in 72 h fed batch fermentation. The results indicate that L-isoleucine production in C. glutamicum could be increased by enhancing the carbon flux and NADPH supply in the biosynthetic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park, J. H. and S. Y. Lee (2010) Metabolic pathways and fermentative production of L-aspartate family amino acids. J. Biotechnol. 5: 560–577.

    Article  CAS  Google Scholar 

  2. Eggeling, L., S. Morbach, and H. Sahm (1997) The fruits of molecular physiology: Engineering the L-isoleusine biosynthesis pathway in Corynebacterium glutamicum. J. Biotechnol. 56: 167–182.

    Article  CAS  Google Scholar 

  3. Umbarger, H. E. (1987) Biosynthesis of the branched-chain amino acids. pp. 352–367. In: F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter, and H. E. Umbarger (eds.). Escherichia coli and Salmonella typhimurium: cellular and molecular biology. American Society for Microbiology, Washington D. C., USA.

    Google Scholar 

  4. Morinaga, Y., H. Takagi, M. Ishida, K. Miwa, T. Sato, S. Nakamori, and K. Sano (1987) Threonine production by co-existence of cloned genes coding homoserine dehydrogenase and homoserine kinase in Brevibacterium lactofermentum. Agric. Biol. Chem. 51: 93–100.

    Article  CAS  Google Scholar 

  5. Colon, G. E., M. S. M. Jetten, T. T. Nguyen, M. E. Gubler, M. T. Follettie, A. J. Sinskey, and G. Stephanopoulos (1994) Effect of inducible thrB expression on amino acid production in Corynebacterium lactofermentum ATCC 21799. Appl. Environ. Microbiol. 61: 74–78.

    Google Scholar 

  6. Dong, X., P. J. Quinn, and X. Wang (2011) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for the production of L-threonine. Biotechnol. Adv. 29: 11–23.

    Article  CAS  Google Scholar 

  7. Morbach, S., H. Sahm, and L. Eggeling (1995) Use of feedbackresistant threonine dehydratases of Corynebacterium glutamicum to increase carbon flux towards L-isoleucine. Appl. Environ. Microbiol. 61: 4315–4320.

    CAS  Google Scholar 

  8. Elišáková, V., M. Pátek, J. Holátko, J. Nešvera, D. Leyval, J. L. Goergen, and S. Delaunay (2005) Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum. Appl. Environ. Microbiol. 71: 207–213.

    Article  Google Scholar 

  9. Kennerknecht, N., H. Sahm, M.-R. Yen, M. Pátek, M. H. Saier, and L. Eggeling (2002) Export of L-isoleucine from Corynebacterium glutamicum: A two-gene-encoded member of a new translocator family. J. Bacteriol. 184: 3947–3956.

    Article  CAS  Google Scholar 

  10. Yin, L., F. Shi, X. Hu, C. Chen, and X. Wang (2013) Increasing L-isoleucine production in Corynebacterium glutamicum by overexpressing global regulator Lrp and two-component export system BrnFE. J. Appl. Microbiol. 114: 1369–1377.

    Article  CAS  Google Scholar 

  11. Ikeda, S., I. Fujita, and F. Yoshinaga (1976) Screening of L-isoleucine producers among ethionine resistant mutants of L-threonine producing bacteria. Agric. Biol. Chem. 40: 511–516.

    Article  CAS  Google Scholar 

  12. Kase, H. and K. Nakayama (1977) L-Isoleucine production by analog-resistant mutants derived from threonine-producing strain of Corynebacterium glutamicum. Agric. Biol. Chem. 41: 109–116.

    Article  CAS  Google Scholar 

  13. Kalinowski, J., B. Bathe, D. Bartels, N. Bischoff, M. Bott, A. Burkovski, N. Dusch, L. Eggeling, B. J. Eikmanns, and L. Gaigalat (2003) The complete Corynebacterium glutamicum ATCC13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J. Biotechnol. 104: 5–25.

    Article  CAS  Google Scholar 

  14. Morbach, S., R. Kelle, S. Winkels, H. Sahm, and L. Eggeling (1996) Engineering the homoserine dehydrogenase and threonine dehydratase control points to analyse flux towards L-isoleucine in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 45: 612–620.

    Article  CAS  Google Scholar 

  15. Eggeling, L., H. Sahm, and A. A. de Graaf (1996) Quantifying and directing metabolite flux: Application to amino acid overproduction. Metab. Eng. 54: 1–30.

    Article  CAS  Google Scholar 

  16. Yin, L., X. Hu, D. Xu, J. Ning, J. Chen, and X. Wang (2012) Coexpression of feedback-resistant threonine dehydratase and acetohydeoxy acid synthase increase L-isoleucine production in Corynebacterium glutamicum. Metab. Eng. 14: 542–550.

    Article  CAS  Google Scholar 

  17. Shi, F., X. J. Huan, X. Y. Wang, and J. F. Ning (2012) Overexpression of NAD kinases improves the L-isoleucine biosyntheis in Corynebacterium glutamicum ssp. lactofermentum. Enz. Microb. Tech. 51: 73–80.

    Article  CAS  Google Scholar 

  18. Peng, Z. J., J. Fang, J. H. Li, L. Liu, G. C. Du, J. Chen, X. Y. Wang, J. F. Ning, and L. M. Cai (2010) Combined dissolved oxygen and pH control strategy to improve the fermentative production of L-isoleucine by Brevibacterium lactofermentum. Bioproc. Biosyst. Eng. 33: 339–345.

    Article  CAS  Google Scholar 

  19. Sambrook, J. and R. W. Russel (2001) Molecular cloning: A laboratory manual. 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.

    Google Scholar 

  20. Xu, D., Y. Tan, X. Huan, X. Hu, and X. Wang (2010) Construction of a novel shuttle vector for use in Brevibacterium flavum, an industrial amino acid producer. J. Microbiol. Meth. 80: 86–92.

    Article  CAS  Google Scholar 

  21. Miller, L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  22. Koros, A., Z. S. Varga, and P. Molnar (2008) Simultaneous analysis of amino acids and amines as their ophthalaldehydeethanethiol-9-fluorenylmethyl chloroformate derivatives in cheese by high-performance liquid chromatography. J. Chromatogr. A. 1203: 146–152.

    Article  CAS  Google Scholar 

  23. Livak, K. J. and T. D. Schmittgen (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔC T method. Methods 25: 402–408.

    Article  CAS  Google Scholar 

  24. Nolden, L., M. Farwick, R. Krämer, and Burkovski (2001) Glutamine synthetases of Corynebacterium glutamicum: Transcriptional control and regulation of activity. FEMS Microbiol. Lett. 201: 91–98.

    Article  CAS  Google Scholar 

  25. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  26. Miyajima, R., S. -I. Otsuka, and I. Shiio (1968) Regulation aspartate family amino acid biosynthesis in Brevibacterium flavum. J. Biochem. 63: 139–148.

    CAS  Google Scholar 

  27. Guillouet, S., A. A. Rodal, and A. J. Sinskey (1999) Expression of the Escherichia coli catabolic threonine dehydratase in Corynebacterium glutamicum and its effect on isoleucine production. Appl. Environ. Microbiol. 65: 3100–3107.

    CAS  Google Scholar 

  28. Westerfeld, W. W. (1945) A colorimetrie determination of blood acetoin. J. Biol. Chem. 161: 495–502.

    CAS  Google Scholar 

  29. Eggeling, I., L. Eggeling, and H. Sahm (1987) Regulation of acetohydroxy acid synthase in Corynebacterium glutamicum during fermentation of α-ketobutyrate to L-isoleucine. Appl. Microbiol. Biotechnol. 25: 346–351.

    CAS  Google Scholar 

  30. Shi, F., S. Kawai, S. Mori, E. Kono, and K. Murata (2005) Identification of ATP-NADH kinase isozymes and their contribution to supply of NADP(H) in Saccharomyces cerevisiae. FEBS. J. 272: 3337–3379.

    Article  CAS  Google Scholar 

  31. Lee, I. Y., M. K. Kim, Y. H. Park, and S. Y. Lee (1996) Regulatory effects of cellular nicotinamide nucleotides and enzyme activities on poly(3-hydroxybutyrate) synthesis in recombinant Escherichia coli. Biotechnol. Bioeng. 52: 707–712.

    Article  CAS  Google Scholar 

  32. Zerez, C. R., S. J. Lee, and K. R. Tanaka (1987) Spectrophotometric determination of oxidized and reduced pyridine nucleotides in erythrocytes using a single extraction procedure. Anal. Biochem. 164: 367–373.

    Article  CAS  Google Scholar 

  33. Kawa, I. S., S. Mori, T. Mukai, W. Hashimoto, and K. Murata (2001) Molecular characterization of Escherichia coli NAD kinase. Eur. J. Biochem. 268: 4359–4365.

    Article  Google Scholar 

  34. Grose, J. H., L. Joss, S. F. Velick, and J. R. Roth (2006) Evidence that feedback inhibition of NAD kinase controls responses to oxidative stress. Proc. Natl. Acad. Sci. USA 103: 7601–7606.

    Article  CAS  Google Scholar 

  35. Sauer, U., F. Canonaco, S. Heri, A. Perrenoud, and E. Fischer (2004) The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J. Biol. Chem. 279: 6613–6619.

    Article  CAS  Google Scholar 

  36. Koffas, M. and G. Stephanopoulos (2005) Strain improvement by metabolic engineering: lysine production as a case study for systems biology. Curr. Opin. Biotechnol. 16: 361–366.

    Article  CAS  Google Scholar 

  37. Lee, K. H., J. H. Park, T. Y. Kim, H. U. Kim, and S. Y. Lee (2007) Systems metabolic engineering of Escherichia coli for L-threonine production. Mol. Syst. Biol. 3: 149.

    Article  CAS  Google Scholar 

  38. Kind, S., J. Becher, and C. Wittmann (2012) Increased lysine production by flux coupling of the tricarboxylic acid cycle and the lysine biosynthetic pathway-Metabolic engineering of the availability of succinyl-CoA in Corynebacterium glutamicum. Metab. Eng. 15: 184–195.

    Article  Google Scholar 

  39. Becker, J., O. Zelder, S. Häfner, H. Schröder, and C. Wittmann (2011) From zero to hero-Design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab. Eng. 13: 159–168.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyuan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, L., Zhao, J., Chen, C. et al. Enhancing the carbon flux and NADPH supply to increase L-isoleucine production in Corynebacterium glutamicum . Biotechnol Bioproc E 19, 132–142 (2014). https://doi.org/10.1007/s12257-013-0416-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0416-z

Keywords

Navigation