Skip to main content
Log in

Production of a thermostable metal-tolerant laccase from Trametes versicolor and its application in dye decolorization

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Production of laccase using a submerged culture of Trametes versicolor sdu-4 was optimized using a central composite design of the Response Surface Methodology. Optimized conditions gave a laccase yield of 4,213 U/L which was approximately three times of that in basal medium. The laccase was purified to homogeneity using a three-step process. The overall yield of the purification was 58%, with a purification fold of 11.4 and a specific activity of 1320.7 U/mg protein. The molecular mass of the laccase was 60 kDa. The optimum pH values of the enzyme were 2.2, 3.7, and 7 for the oxidations of ABTS, DMP, and syringaldazine, respectively. The enzyme had adaptability to a broad pH range and high temperature and wsa stable at pH 3.0 ∼ 10.0. The half-life of this laccase at 70°C was 2.2 h. Methyl red, 2-bromophenol, and 4-bromophenol were oxidized by the purified laccase in the absence of mediators. Purified laccase was effective in the decolorization of several dyes and was not inhibited by Cu2+, Mn2+, Zn2+, Na+, K+, Mg2+, Ba2+, and Ca2+ at 5 mM. These excellent characteristics made it a highly attractive candidate for industrial use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yoshida, H. (1883) Chemistry of lacquer (urushi). J. Chem. Soc. 43: 472–486.

    CAS  Google Scholar 

  2. Alexandre, G. and I. B. Zhulin (2000) Laccases are widespread in bacteria. Trends Biotechnol. 18: 41–42.

    Article  CAS  Google Scholar 

  3. Mayer, A. M. and R. C. Staples (2002) Laccase: New functions for an old enzyme. Phytochem. 60: 551–565.

    Article  CAS  Google Scholar 

  4. Thurston, C. F. (1994) The structure and function of fungal laccases. Microbiol. 140: 19–26.

    Article  CAS  Google Scholar 

  5. Hadzhiyska, H., M. Calafell, J. M. Gibert, J. M. Dagà, and T. Tzanov (2006) Laccase-assisted dyeing of cotton. Biotechnol. Lett. 28: 755–759.

    Article  CAS  Google Scholar 

  6. Niladevi, K. N. and P. Prema (2008) Effect of inducers and process parameters on laccase production by Streptomyces psammoticus and its application in dye decolourization. Bioresour. Technol. 99: 4583–4589.

    Article  CAS  Google Scholar 

  7. Zouari-Mechichi, H., T. Mechichi, A. Dhouib, S. Sayadi, A. T. Martínez, and M. J. Martínez (2006) Laccase purification and characterization from Trametes trogii isolated in Tunisia: Decolorization of textile dyes by the purified enzyme. Enz. Microb. Technol. 39: 141–148.

    Article  CAS  Google Scholar 

  8. Box, G. E. P. and D. W. Behnken (1960) Some new three level design for study of quantitative variables. Technometrics 2: 455–475.

    Article  Google Scholar 

  9. Ryu, W. R., S. H. Shim, M. Y. Jang, Y. J. Jeon, K. K. Oh, and M. H. Cho (2000) Biodegradation of pentachlorophenol by white rot fungi underligninolytic and nonligninolytic Conditions. Biotechnol. Bioproc. Eng. 5: 211–214.

    Article  CAS  Google Scholar 

  10. Zhang, H. B., Y. L. Zhang, F. Huang, P. J. Gao, and J. C. Chen (2009) Purification and characterization of a thermostable laccase with unique oxidative characteristics from Trametes hirsuta. Biotechnol. Lett. 31: 837–843.

    Article  CAS  Google Scholar 

  11. Sharma, P., L. Singh, and N. Dilbaghi (2009) Optimization of process variables for decolorization of Disperse Yellow 211 by Bacillus subtilis using Box-behnken design. J. Hazard. Mater. 164: 1024–1029.

    Article  CAS  Google Scholar 

  12. Palvannan, T. and P. Sathishkumar (2010) Production of laccase from Pleurotus florida NCIM 1243 using Plackett-Burman design and response surface methodology. J. Basic Microbiol. 50: 325–335.

    Article  CAS  Google Scholar 

  13. Bourbonnais, R., M. G. Paice, I. D. Reid, P. Lanthier, and M. Yaguchi (1995) Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,20-azinobis (3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization. Appl. Environ. Microbiol. 61: 1876–1880.

    CAS  Google Scholar 

  14. Minussi, R. C., M. A. Miranda, J. A. Silva, C. V. Ferreira, H. Aoyama, S. Marangoni, D. Rotilio, G. M. Pastore, and N. Durán (2007) Purification, characterization and application of laccase from Trametes versicolor for colour and phenolic removal of olive mill wastewater in the presence of 1-hydroxybenzotriazole. Afr. J. Biotechnol. 6: 1248–1254.

    CAS  Google Scholar 

  15. Han, M. J., H. T. Choi, and H. G. Song (2005) Purification and characterization of laccase from the white rot fungus Trametes versicolor. J. Microbiol. 43: 555–560.

    CAS  Google Scholar 

  16. Forootanfar, H., M. A. Faramarzi, A. R. Shahverdi, and M. T. Yazdi (2011) Purification and biochemical characterization of extracellular laccase from the ascomycete Paraconiothyrium variabile. Bioresour. Technol. 102: 1808–1814.

    Article  CAS  Google Scholar 

  17. Halaburgi, V. M., S. Sharma, M. Sinha, T. P. Singh, and T. B. Karegoudar (2011) Purification and characterization of a thermostable laccase from the ascomycetes Cladosporium cladosporioides and its applications. Proc. Biochem. 46: 1146–1152.

    Article  CAS  Google Scholar 

  18. Coll, P. M., J. M. Fernandez-Abalos, J. R. Villanueva, R. Santamaria, and P. Perez (1993) Purification and characterization of a phenoloxidase (laccase) from the lignindegrading basidiomycete PM1(CECT 2971). Appl. Environ. Microbiol. 59: 2607–2613.

    CAS  Google Scholar 

  19. Jung, J., F. Xu, and K. Li (2002) Purification and characterization of laccase from wood-degrading fungus Trichophyton rubrum LKY-7. Enz. Microb. Technol. 30: 161–168.

    Article  CAS  Google Scholar 

  20. Nakade, K., Y. Nakagawa, A. Yano, T. Sato, and Y. Aakamoto (2010) Characterization of an extracellular laccase, PbLac1, purified from Polyporus brumalis. Fungal Biol. 114: 609–618.

    Article  CAS  Google Scholar 

  21. Liu, L. H., Z. W. Lin, T. Zheng, L. Lin, C. Q. Zheng, Z. X. Lin, S. H. Wang, and Z. H. Wang (2009) Fermentation optimization and characterization of the laccase from Pleurotus ostreatus strain 10969. Enz. Microb. Technol. 44: 426–433.

    Article  CAS  Google Scholar 

  22. Murugesan, K., M. Arulmani, I. H. Nam, Y. M. Kim, Y. S. Chang, and P. T. Kalaichelvan (2006) Purification and characterization of laccase produced by a white rot fungus Pleurotus sajorcaju under submerged culture condition and its potential in decolorization of azo dyes. Appl. Microbiol. Biotechnol. 72: 939–946.

    Article  CAS  Google Scholar 

  23. Levin, L., A. Viale, and A. Forchiassin (2003) Degradation of organic pollutants by the white rot basidiomycete Trametes trogii. Int. Biodet. Biodeg. 52: 1–5.

    Article  CAS  Google Scholar 

  24. Baldrian, P. (2006) Fungal laccases-occurrence and properties. FEMS Microbiol. Rev. 30: 215–242.

    Article  CAS  Google Scholar 

  25. Schückel, J., A. Matura, and K. H. V. Pée (2011) One-copper laccase-related enzyme from Marasmius sp.: Purification, characterization and bleaching of textile dyes. Enz. Microb. Technol. 48: 278–284.

    Article  Google Scholar 

  26. Wang, Z. X., Y. J. Cai, X. R. Liao, G. J. Tao, Y. Y. Li, F. Zhang, and D. B. Zhang (2010) Purification and characterization of two thermostable laccases with high cold adapted characteristics from Pycnoporus sp. SYBC-L1. Proc. Biochem. 45: 1720–1729.

    Article  CAS  Google Scholar 

  27. Xu, F. (1996) Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition. Biochem. 35: 7608–7614.

    Article  CAS  Google Scholar 

  28. Liers, C., R. Ullrich, M. Pecyna, D. Schlosser, and M. Hofrichter (2007) Production, purification and partial enzymatic and molecular characterization of a laccase from the wood-rotting ascomycete Xylaria polymorpha. Enz. Microb. Technol. 41: 785–793.

    Article  CAS  Google Scholar 

  29. Reiss, R., J. Ihssen, and L. Thöny-Meyer (2011) Bacillus pumilus laccase: A heat stable enzyme with a wide substrate spectrum. BMC Biotechnol. 11: 9.

    Article  CAS  Google Scholar 

  30. D’souza-Ticlo, D., D. Sharma, and C. Raghukumar (2009) A thermostable Metal-tolerant laccase with bioremediation potential from a Marine-derived fungus. Mar. Biotechnol. 11: 725–737.

    Article  Google Scholar 

  31. Niku-Paavola, M. L., R. Fagerström, K. Kruus, and L. Viikari (2004) Thermostable laccases produced by a white-rot fungus from Peniophora species. Enz. Microb. Technol. 35: 100–102.

    Article  CAS  Google Scholar 

  32. Palmieri, G., P. Giardina, C. Bianco, A. Scaloni, A. Capasso, and G. Sannia (1997) A novel white laccase from Pleurotus ostreatus. J. Biol. Chem. 272: 31301–31307.

    Article  CAS  Google Scholar 

  33. Asgher, M., H. N. Bhatti, M. Ashraf, and R. L. Legge (2008) Recent developments in biodegradation of industrial pollutants by white-rot fungi and their enzyme system. Biodegradation 19: 771–783.

    Article  CAS  Google Scholar 

  34. Wong, K. K. Y., J. D. Richardson, and S. D. Mansfield (2000) Enzymatic treatment of mechanical pulp fibres for improving papermaking properties. Biotechnol. Prog. 16: 1025–1029.

    Article  CAS  Google Scholar 

  35. Ko, E. M., Y. E. Leem, and H. T. Choi (2001) Purification and characterization of laccase isozymes from the white-rot basidiomycete Ganoderma lucidum. Appl. Microbiol. Biotechnol. 57: 98–102.

    Article  CAS  Google Scholar 

  36. Telke, A. A., A. A. Kadam, S. S. Jagtap, J. P. Jadhav, and S. P. Govindwar (2010) Biochemical characterization and potential for textile dye degradation of blue laccase from Aspergillus ochraceus NCIM-1146. Biotechnol. Bioproc. Eng. 15: 696–703.

    Article  CAS  Google Scholar 

  37. Farnet, A. M., G. Gil, and E. Ferre (2008) Effects of pollutants on laccase activities of Marasmius quercophilus, a white-rot fungus isolated from a Mediterranean schlerophyllous litter. Chemosphere 70: 895–900.

    Article  CAS  Google Scholar 

  38. Guo, L. Q., S. X. Lin, X. B. Zheng, Z. R. Huang, and J. F. Lin (2011) Production, purification and characterization of a thermostable laccase from a tropical white-rot fungus. World J. Microbiol. Biotechnol. 27: 731–735.

    Article  CAS  Google Scholar 

  39. Casas, N., T. Parella, T. Vicent, G. Caminal, and M. Sarrà (2009) Metabolites from the biodegradation of triphenylmethane dyes by Trametes versicolor or laccase. Chemosphere 75: 1344–1349.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Zhang, H., Cao, M. et al. Production of a thermostable metal-tolerant laccase from Trametes versicolor and its application in dye decolorization. Biotechnol Bioproc E 16, 1027–1035 (2011). https://doi.org/10.1007/s12257-011-0129-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0129-0

Keywords

Navigation