Skip to main content
Log in

Methylglyoxal and Glyoxalase System in Plants: Old Players, New Concepts

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Methylglyoxal (MG), a reactive α, β-dicarbonyl ketoaldehyde, is unavoidable by-product of several metabolic pathways, it has long been considered as cytotoxin at high concentration, but now is emerging signal molecule function at low concentration in plants. Thus, MG homeostasis in plant cells is very important to exert its physiological function. Glyoxalase system, mainly including glyoxalase I and glyoxalase II, is the major regulator of MG homeostasis in plants. Recent years, research on MG and its detoxification system glyoxalase has attracted much attention in plant biology. Based on the current progress on MG and glyoxalase system, in this review, MG biosynthesis and degradation; determination of MG; MG as signal iniator crosstalk with Ca2+, reactive oxygen species and abscisic acid; satl, heavy metal, drought, cold and heat tolerance involved in MG and glyoxalase system; stomatal movement; seed germiantion; and cell division and organ differentiation, were summarized. Meanwhile, research direction in the future was presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ADH:

Aldehyde dehydrogenase

AGEs:

Advanced glycation end products

AKR:

Aldo-keto reductase

ALR:

Aldose/aldehyde reductase

AMO:

Acetol monooxygenase

APX:

Ascorbate peroxidase

AsA:

Ascorbic acid

CaM:

Calmodulin

CAT:

Catalase

CPZ:

Chlorpromazine

DHA:

Dehydroascorbic acid

DHAP:

Dihydroxyacetone phosphate

DHAR:

Dehydroascorbate reductase

DNP:

2,4-dinitrophenylhydrazine

Gly I/II:

Glyoxalase I/II

GPX:

Glutathione peroxidase

G3P:

Glyceraldehyde-3-phosphate

GR:

Glutathione reductase

GSH:

Glutathione

GSSG:

Oxidized glutathione

GST:

Glutathione S-transferase

HM:

Heavy metal

HTA:

Hemithioacetal

L-/D-LDH:

L-/D-lactate dehydrogenase

MDA:

Malondialdehyde

MDHAR:

Mono-dehydroascorbate reductase

MG:

Methylglyoxal

MGDH:

Methylglyoxal dehydrogenase

MGR:

Methylglyoxal reductase

MGS:

Methylglyoxal synthase

Mit:

Mitochondia

NAC:

N-acetyl-L-cysteine

NO:

Nitric oxide

PC:

Phytochaletins

POD:

Peroxidase

Pro:

Proline

ROS:

Reactive oxygen species

SHAM:

Salicylhydroxamic acid

SLG:

S-D-lactoylglutahione

SOD:

Superoxide dismutase

SSAO:

Semicarbazide-sensitive amine oxidase

TCA:

Tricarboxylic acid cycle

TFP:

Trifluoperazine

TP:

Triosephosphate

TPI:

Triosephosphate isomerase

Literature Cited

  • Aguilera, J., S. Rodriguez-Vargas & J. A. Preito. 2005. The HOG MAP kinase pathway is required for the induction of methylglyoxal-responsive genes and determines methylglyoxal resistance in Saccharomyces cerevisiae. Molecular Microbiology 56: 228–239.

    Article  CAS  PubMed  Google Scholar 

  • Alam, M. M., K. Nahar, M. Hasanuzzaman & M. Fujita. 2014. Exogenous jasmonic acid modulates the physiology, antioxidant defense and glyoxalase systems in imparting drought stress tolerance in different Brassicaspecies. Plant Biotechnology Reports 8: 279–293.

    Article  Google Scholar 

  • Bagga, S., R. Das & S. Sopory. 1987. Inhibition of cell proliferation and glyoxalase-I activity by calmodulin inhibitors and lithium in Brassica oleracea. Journal of Plant Physiology 129: 149–153.

    Article  CAS  Google Scholar 

  • Banu, M. N. A., M. A. Hoque, M. Watamable-Sugimoto, M. A. Islam, M. Uraji, M. Matsuoka, Y. Nakamura & Y. Murata. 2010. Proline and glycine betaine ameliorated NaCl stress via scavenging of hydrogen peroxide and methylglyoxal but not superoxide or nitric oxide in tobacco cultured cells. Bioscience Biotechnology and Biochemistry 74: 2043–2049.

    Article  CAS  Google Scholar 

  • Campbell, A. K., R. Naseem, I. B. Holland, S. B. Matthews & K. T. Wann. 2007. Methylglyoxal and other carbohydrate metabolites induce lanthanum-sensitive Ca2+ transients and inhibit growth in E. coli. Archives of Biochemistry and Biophysics 468: 107–113.

    Article  CAS  PubMed  Google Scholar 

  • Céccoli, G., J. Ramos, V. Pilatti, I. Dellaferrera, J. C. Tivano, E. Taleisnik & A. C. Vegetti. 2015. Salt glands in the Poaceae family and their relationship to salinity tolerance. The Botanical Review 81: 162–178.

    Article  Google Scholar 

  • Chakraborty, S., K. Karmakar & D. Chakravortty. 2014. Cells producing their own nemesis: understanding methylglyoxal metabolism. IUBMB Life 66: 667–678.

    Article  CAS  PubMed  Google Scholar 

  • Chang, T., R. Wang & L. Wu. 2005. Methylglyoxal-induced nitric oxide and peroxynitrite production in vascular smooth muscle cells. Free Radical Biology and Medicine 38: 286–293.

    Article  CAS  PubMed  Google Scholar 

  • Chen, K., J. Renaut, K. Sergeant, H. Wei & R. Arora. 2013. Proteomic changes associated with freeze-thaw injury and post-thaw recovery in onion (Allium cepa L.) scales. Plant, Cell & Environments 36: 892–905.

    Article  Google Scholar 

  • Cheng, W. L., M. M. Tsai, C. Y. Tsai, Y. H. Huang, C. Y. Chen & H. C. Chi. 2012. Glyoxalase-I is a novel prognosis factor associated with gastric cancer progression. PLoS ONE 7, e34352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai, K. M., T. Chang, H. Wang, A. Banigesh, A. Dhar, J. H. Liu, A. Untereiner, L. Y. Wu & L. Y. Wu. 2010. Oxidative stress and aging: is methylglyoxal the hidden enemy? Canadian Journal of Physiology and Pharmacology 88: 273–284.

    Article  CAS  PubMed  Google Scholar 

  • Deswal, R. & S. K. Sopory. 1999. Glyoxalase I from Brassica juncea is a calmodulin stimulated protein. Biochimica et Biophysica Acta 1450: 460–467.

    Article  CAS  PubMed  Google Scholar 

  • Devanathan, S., A. Erban, R. J. Perez-Torres, J. Kopka & C. A. Makaroff. 2014. Arabidopsis thaliana glyoxalase 2-1 is required during abiotic stress but is not essential under normal plant growth. PLoS ONE 9(4), e95971.

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Shabrawi, H., B. Kumar, T. Kaul, M. K. Reddy, S. L. Singla-Pareek & S. K. Sopory. 2010. Redox homeostasis, antioxidant defense, and methylglyoxal detoxification as markers for salt tolerance in Pokkali rice. Protoplasma 24: 85–96.

    Article  Google Scholar 

  • Fujii, E., P. E. Verslues & J. K. Zhu. 2007. Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth and gene expression in Arabidopsis. The Plant Cell 19: 485–494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukushima, E., Y. Arata, T. Endo, U. Sonnewald & F. Sato. 2001. Improved salt tolerance of transgenic tobacco expressing apoplastic yeast-derived invertase. Plant and Cell Physiology 42: 245–249.

    Article  CAS  PubMed  Google Scholar 

  • Goulas, E., M. Schubert, T. Kieselbach, L. A. Kleczkowski, P. Gardestrom, W. Schroder & V. Hurry. 2006. The chloroplast lumen and stromal proteomes of Arabidopsis thaliana show differential sensitivity to short-and long-term exposure to low temperature. The Plant Journal 47: 720–734.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert, R. P. & R. B. Brandt. 1975. Spectrophotometric determination of methyl glyoxal with 2,4-dinitrophenylhydrazine. Analitical Chemistry 47: 2418–2422.

    Article  CAS  Google Scholar 

  • Gill, S. S. & N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48: 909–930.

    Article  CAS  PubMed  Google Scholar 

  • Gisbert, C., A. M. Rus, M. C. Bolarm, J. M. Lopez-Coronado, I. Arrillaga, C. Montesinos, M. Caro, R. Serrano & V. Moreno. 2000. The yeast HAL1 gene improves salt tolerance of transgenic tomato. Plant Physiology 123: 393–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golldack, D., C. Li, H. Mohan & N. Probst. 2014. Tolerance to drought and salt stress in plants: unraveling the signaling networks. Frontier in Plant Science 5: 151.

    Google Scholar 

  • Ghosh, A., A. Pareek, S. K. Sopory & S. L. Singla-Pareek. 2014. A glutathione responsive rice glyoxalase II, OsGLYII-2, functions in salinity adaptation by maintaining better photosynthesis efficiency and anti-oxidant pool. The Plant Journal 80: 93–105.

    Article  CAS  PubMed  Google Scholar 

  • ———, H. R. Kushwaha, M. R. Hasan, A. Pareek, S. K. Sopory & S. L. Singla-Pareek. 2016. Presence of unique glyoxalase III proteins in plants indicates the existence of shorter route for methylglyoxal detoxification. Scientific Reports 6: 18358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman, M., M. A. Hossain & M. Fujita. 2011. Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings. Plant Biotechnology Reports 5: 353–365.

    Article  Google Scholar 

  • ———, K. Nahar, M. M. Alam & M. Fujita. 2014. Modulation of antioxidant machinery and the methylglyoxal detoxification system in selenium-supplemented Brassica napus seedlings confers tolerance to high temperature stress. Biological Trace Element Research 161: 297–307.

  • Hegedüs, A., S. Erdei, T. Janda, E. Tóth, G. Horváth & D. Dudits. 2004. Transgenic tobacco plants overproducing alfalfa aldose/aldehydes reductase show higher tolerance to low temperature and cadmium stress. Plant Science 166: 1329–1333.

    Article  Google Scholar 

  • Holmstrom, K., S. Somersalo, A. Manda, T. E. Palva & B. Welin. 2000. Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. Journal of Experimental Botany 51: 177–185.

    Article  CAS  PubMed  Google Scholar 

  • Hoque, T. S., E. Okuma, M. Uraji, T. Furuichi, T. Sasaki & M. A. Hoque. 2012. Inhibitory effects of methylglyoxal on light-induced stomatal opening and inward K+ channel activity in Arabidopsis. Bioscience Biotechnology and Biochemistry 76: 617–619.

    Article  CAS  Google Scholar 

  • ———, M. Uraji, A. Tuya, Y. Nakamura, & Y. Murata. 2012b. Methylglyoxal inhibits seed germination and root elongation and up-regulates transcription of stress-responsive genes in ABA-dependent pathway in Arabidopsis. Plant Biol 14:854–858.

  • ———, ———, W. Ye, M. A. Hossain, Y. Nakamura & Y. Murata. 2012c. Methylglyoxal-induced stomatal closure accompanied by peroxidase-mediated ROS production in Arabidopsis. J Plant Physiol 169:979–986.

  • ———, ———, A. Torii, A. N. K. Banu, I. C. Mori, Y. Nakamura, Y. Murata. 2012d. Methylglyoxal inhibition of cytosolic ascorbate peroxidase from Nicotiana tabacum. J Biochem Mol Toxicol 26:315–321.

  • ———, M. A. Hossain, M. G. Mostofa, D. J. Burritt, M. Fujita. 2016. Signalling roles of methylglyoxal and the involvement of the glyoxalase system in plant abiotic stress responses and tolerance. Pp. 311–326. In: M. M. Azooz, & P. Ahmad (eds.), Plant-environment interaction: Responses and approaches to mitigate stress. Wiley, UK.

  • Hoshida, H., Y. Tanaka, T. Hibino, Y. Hayashi, A. Tanaka, T. Takabe & T. Takabe. 2000. Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Molecular Biology 43: 103–111.

    Article  CAS  PubMed  Google Scholar 

  • Hossain, M. A. & M. Fujita. 2009. Purification of glyoxalase I from onion bulbs and molecular cloning of its cDNA. Bioscience Biotechnology and Biochemistry 73: 2007–2013.

    Article  CAS  Google Scholar 

  • ——— & ———. 2010. Evidence for a role of exogenous glycinebetaine and proline in antioxidant defense and methylglyoxal detoxification systems in mung bean seedlings under salt stress. Physiol Mol Biol Plant 16:19–29.

  • ———, J. A. T. da Silva, & M. Fujita. 2011. Glyoxalase system and reactive oxygen species detoxification system in plant abiotic stress response and tolerance: An intimate relationship. Pp. 235–266. In: A. K. Shanker, & B. Venkateswarlu (eds.), Abiotic stress in plants-mechanisms and adaptations. InTech, Croatia.

  • ———, P. Piyatida, J. A. T. Silva & M. Fujita. 2012. Molecular mechanismof heavy metal toxicity and tolerance in plants: Central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. Journal of Botany ID 872875.

  • ———, M. G. Mostofa, D. J. Burritt, M. Fujita. 2014. Modulation of reactive oxygen species and methylglyoxal detoxification systems by exogenous glycinebetaine and proline improves drought tolerance in mustard (Brassica juncea L.). International Journal of Plant Biology & Research 2: 1014.

  • ———, D. J. Burritt, & M. Fujita. 2016. Proline and glycine betaine modulate cadmium-induced oxidative stress tolerance in plants: Possible biochemical and molecular mechanisms. Pp. 97–123. In: M. M. Azooz, & P. Ahmad (eds.), Plant-environment interaction: Responses and approaches to mitigate stress. Wiley, UK.

  • Kasuga, M., Q. Liu, S. Miura, K. Yamaguchi-Shinozaki & K. Shinozaki. 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology 17: 287–291.

    Article  CAS  PubMed  Google Scholar 

  • Kaur, C., A. Ghosh, A. Pareek, S. K. Sopory & S. L. Singla-Pareek. 2014a. Glyoxalases and stress tolerance in plants. Biochemical Society Transactions 42: 485–490.

    Article  CAS  PubMed  Google Scholar 

  • ———, S. L. Singla-Pareek & S. K. Sopory. 2014b. Glyoxalase and methylglyoxal as biomarkers for plant stress tolerance. Critical Review in Plant Science 33: 429–456.

  • Kishor, P. B. K., Z. Hong, G. H. Miao, C. A. A. Hu & D. P. S. Verma. 1995. Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiology 108: 1387–1394.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, V. & S. K. Yadav. 2009. Proline and betaine provide protection to antioxidant and methylglyoxal detoxification systems during cold stress in Camellia sinensis (L.) O. Kuntze. Acta Physiologiae Plantarum 31: 261–269.

    Article  CAS  Google Scholar 

  • Kumar, D., P. Singh, M. A. Yusuf, C. P. Upadhyaya, S. D. Roy, T. Hohn & N. B. Sarin. 2013. The Xerophyta viscose aldose reductase (ALDRXV4) confers enhanced drought and salinity tolerance to transgenic tobacco plants by scavenging methylglyoxal and reducing the membrane damage. Molecular Biotechnology 54: 292–303.

    Article  CAS  PubMed  Google Scholar 

  • Kwon, K., D. Choi, J. K. Hyun, H. S. Jung, K. Baek & C. Park. 2013. Novel glyoxalases from Arabidopsis thaliana. FEBS Journal 280: 3328–3339.

    Article  CAS  PubMed  Google Scholar 

  • Le, D. T., R. Nishiyama, Y. Watanabe, M. Tanaka, M. Seki, L. H. Ham, K. Yamaguchi-Shinozaki, K. Shinozaki & L. S. P. Tran. 2012. Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis. PLoS One 7, e49522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, D. G., N. Ahsan, S. H. Lee, J. J. Lee, J. D. Bahk, K. Y. Kang & B. H. Lee. 2009. Chilling stress-induced proteomic changes in rice roots. Journal of Plant Physiology 166: 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z.-G., M. Gong & P. Liu. 2012. Hydrogen sulfide is a mediator in H2O2-induced seed germination in Jatropha Curcas. Acta Physiologiae Plantarum 34: 2207–2213.

    Article  CAS  Google Scholar 

  • ———, S. Z. Yang, W. B. Long, G. X. Yang, & Z. Z .Shen. 2013. Hydrogen sulfide may be a novel downstream signal molecule in nitric oxide-induced heat tolerance of maize (Zea mays L.) seedlings. Plant, Cell & Environment 36: 1564–1572.

  • ———, H. Z. Zeng, P. X. Ao, & M. 2014. Lipid response to short-term chilling shock and long-term chill hardening in Jatropha curcas L. seedlings. Acta Physiologiae Plantarum 36: 2803–2814.

  • Maeta, K., S. Izawa & Y. Inoue. 2005. Methylgyoxal, a metabolite derived from glycolysis, functions as a signal initiator of the high osmolarity glycerol-mitogen-activated protein kinase cascade and calcineurin/Crz1- mediated pathway in Saccharomyces cerevisiae. Journal of Biological Chemistry 280: 253–260.

    Article  CAS  PubMed  Google Scholar 

  • Martins, A. M. T. B. S., C. A. A. Coedeiro & A. M. J. P. Freire. 2001. In situ analysis of methylglyoxal metabolism in Saccharomyces cerevisiae. FEBS Letter 499: 41–44.

    Article  CAS  Google Scholar 

  • Mostofa, M. G., N. Yoshida & M. Fujita. 2014. Spermidine pretreatment enhances heat tolerance in rice seedlings through modulating antioxidative and glyoxalase systems. Plant Growth Regulation 73: 31–44.

    Article  CAS  Google Scholar 

  • Mustafiz, A., A. Ghosh & A. K. Tripathi. 2014. A unique Ni2+-dependent and methylglyoxal-inducible rice glyoxalase possesses a single active site and functions in abiotic stress response. The Plant Journal 78: 951–963.

    Article  CAS  PubMed  Google Scholar 

  • ———, K. K. Sahoo, S. L. Singla-Pareek, & S. K. Sopory. 2010. Metabolic engineering of glyoxalase pathway for enhancing stress tolerance in plants. Pp. 95–118. In: R. Sunkar (ed.), Plant stress tolerance. Springer, UK.

  • Nahar, K., M. Hasanuzzaman, M. M. Alam & M. Fujita. 2015. Roles of exogenous glutathione in antioxidant defense system and methylglyoxal detoxification during salt stress in mung bean. Biologia Plantarum 59: 745–756.

    Article  CAS  Google Scholar 

  • ———, ———, ——— & ———. 2015b. Glutathione-induced drought stress tolerance in mung bean: coordinated roles of the antioxidant defence and methylglyoxal detoxification systems. AoB Plants 7: plv069.

  • ———, ———, ———. 2015c. Exogenous glutathione confers high temperature stress tolerance in mung bean (Vigna radiata L.) by modulating antioxidant defense and methylglyoxal detoxification system. Environmental and Experimental Botany 112: 44–54.

  • Oberschall, A., M. Deak, K. Török, L. Sass, I. Vass, I. Kovács, A. Fehér, D. Dudits & G. V. Horváth. 2000. A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stresses. The Plant Journal 24: 437–446.

    Article  CAS  PubMed  Google Scholar 

  • Pardo, J. M., M. P. Reddy, S. Yang, A. Maggio, G.-H. Huh, T. Matsumoto, M. A. Coca, M. Paino-D'Urazo, H. Koiwa, D.-J. Yun, A. A. Watad, R. A. Bressan & P. M. Hasegawa. 1998. Stress signaling through Ca2+/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants. Proceedings of the National Academy of Science of the United States of America 95: 9681–9686.

    Article  CAS  Google Scholar 

  • Paulus, C., B. Kollner & H. J. Jacobsen. 1993. Physiological and biochemical characterization of glyoxalase I: a general marker for cell proliferation from a soybean cell suspension. Planta 189: 561–566.

    Article  CAS  PubMed  Google Scholar 

  • Rabbani, N. & P. J. Thornalley. 2012. Methylglyoxal, glyoxalase I and dicarbonyl proteome. Amino Acids 42: 1133–1142.

    Article  CAS  PubMed  Google Scholar 

  • Racker, E. 1951. The mechanism of action of glyoxalase. Journal of Biological Chemistry 190: 685–696.

    CAS  PubMed  Google Scholar 

  • Rahman, A., M. G. Mostofa, K. Nahar, M. Hasanuzzaman, & M. Fujita. 2016. Exogenous calcium alleviates cadmium-induced oxidative stress in rice (Oryza sativa L.) seedlings by regulating the antioxidant defense and glyoxalase systems. Brazian Journal of Botany 39: in press.

  • ———, ———, M. M. Alam, K. Nahar, M. Hasanuzzaman, & M. Fujita. 2015. Calcium mitigates arsenic toxicity in rice seedlings by reducing arsenic uptake and modulating the antioxidant defense and glyoxalase systems and stress markers. BioMed Research International 2015: 1–12.

  • Ray, A., S. Ray, S. Mukhopadhyay & M. Ray. 2013. Methylglyoxal with glycine or succinate enhances differentiation and shoot morphogenesis in Nicotiana tabacum callus. Biologia Plantarum 57: 219–223.

    Article  CAS  Google Scholar 

  • Roxas, V. P., R. K., Jr. Smith, E. R. Allen & R. D. Allen. 1997. Overexpression of glutathione Stransferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nature Biotechnology 15: 988–991.

  • Roy, K., S. De, M. Ray & S. Ray. 2004. Methylglyoxal can completely replace the requirement of kinetin to induce differentiation of plantlets from some plant calluses. Plant Growth Regulation 44: 33–45.

    Article  CAS  Google Scholar 

  • Roy, S. J., S. Negrao & M. Tester. 2014. Salt resistant crop plants. Current Opinion in Biotechnology 26: 115–124.

    Article  CAS  PubMed  Google Scholar 

  • Saxena, M., R. Bisht, S. D. Roy, S. K. Sopory & N. Bhalla-Sarin. 2005. Cloning and characterization of a mitochondrial glyoxalase I from Brassica juncea that is upregulated by NaCl, Zn, and ABA. Biochemical and Biophysical Resear Communnications 336: 813–819.

    Article  CAS  Google Scholar 

  • Serrano, R., F. A. Culianez-Macia & V. Moreno. 1999. Genetic engineering of salt and drought tolerance with yeast regulatory genes. Scientia Horticulture 78: 261–269.

    Article  CAS  Google Scholar 

  • Sheveleva, E., W. Chmar, H. J. Bohnert & R. G. Jensen. 1997. Increased salt and drought tolerance by Dononitol production in transgenic Nicotiana tabacum L. Plant Physiology 115: 1211–1219.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, P. & N. Dhaka. 2016. Glyoxalase system and salinity stress in plants. Pp 173–185. In: S. H. Wani & M. A. Hossain (eds). Managing salt tolerance in plants: Molecular and genomic perspectives. CRC Press, UK.

    Google Scholar 

  • Singla-Pareek, S. L., M. K. Reddy & S. K. Sopory. 2003. Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proceeding of Natural Academic Science, USA 100: 14672–14677.

    Article  CAS  Google Scholar 

  • ———, S. K. Yadav, A. Pareek, M. K. Reddy, & S. K. Sopory. 2006. Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiology 140: 613–623.

  • ———, ———, ———, ———, ———. 2008. Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Research 17: 171–180.

  • Suarez, R., C. Calderon & G. Iturriaga. 2009. Enhanced tolerance to multiple abiotic stresses in transgenic alfalfa accumulating trehalose. Crop Science 49: 1791–1799.

    Article  CAS  Google Scholar 

  • Sun, W., X. Xu, H. Zhu, A. Liu, L. Liu, J. Li & X. Hua. 2010. Comparative transcriptomic profiling of a salt-tolerant wild tomato species and a salt-sensitive tomato cultivar. Plant Cell Physiology 51: 997–1006.

    Article  CAS  PubMed  Google Scholar 

  • Takatsume, Y., S. Izawa & Y. Inoue. 2006. Methylglyoxal as a signal initiator for activation of the stress-activated protein kinase cascade in the fission yeast Schizosaccharomyces pombe. Journal of Biological Chemistry 281: 9086–9092.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, Y., T. Hibino, Y. Hayashi, A. Tanaka, S. Kishitani, T. Takabe, S. Yokota & T. Takabe. 1999. Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Science 148: 131–138.

    Article  CAS  Google Scholar 

  • Turoczy, Z., P. Kis, K. Torok, M. Cserhati, A. Lendvai, D. Dudits & G. V. Horvath. 2011. Overproduction of a rice aldo–keto reductase increases oxidative and heat stress tolerance by malondialdehyde and methylglyoxal detoxification. Plant Molecular Biology 75: 399–412.

    Article  CAS  PubMed  Google Scholar 

  • Veena, V. S. Reddy & S. K. Sopory. 1999. Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. The Plant Journal 17: 385–395.

    Article  CAS  PubMed  Google Scholar 

  • Viveros, M. F. A., C. Inostroza-Blancheteau, T. Timmermann, M. Gonzalez & P. Arce-Johnson. 2013. Overvexpression of Gly I and Gly II genes in transgenic tomato (Solamum lycopersicum Mill.) plants confer salt tolerance by decreasing oxidative stress. Molecular Biology Reports 40: 3281–3290.

    Article  Google Scholar 

  • Wang, W., B. Vinocur & A. Altman. 2003. Plant responses to drought, salinity and extreme temperatures towards genetic engineering for stress tolerance. Planta 218: 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., J. Liu & L. Wu. 2009. Methylglyoxal-induced mitochondrial dysfunction in vascular smooth muscle cells. Biochemical Pharmacology 77: 1709–1716.

    Article  CAS  PubMed  Google Scholar 

  • Wild, R., L. Ooi, V. Srikanth & G. Münch. 2012. A quick, convenient and economical method for the reliable determination of methylglyoxal in millimolar concentrations: the N-acetyl-L-cysteine assay. Analytical and Bioanalytical Chemistry 403: 2577–2581.

    Article  CAS  PubMed  Google Scholar 

  • Wu, C., C. Ma, Y. Pan, S. Gong, C. Zhao, S. Chen & H. Li. 2013. Sugar beet M14 glyoxalase I gene can enhance plant tolerance to abiotic stresses. Journal of Plant Research 126: 415–425.

    Article  CAS  PubMed  Google Scholar 

  • Yadav, S. K., S. L. Singla-Pareek, M. Ray, M. K. Reddy & S. K. Sopory. 2005. Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochemical and Biophysical Research Communications 337: 61–67.

    Article  CAS  PubMed  Google Scholar 

  • ———, ———, ———, ——— & ———. 2005b. Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. FEBS Letter 579: 6265–6271.

  • ———, ———, M. K. Reddy & S. K. Sopory. 2005c. Methylglyoxal detoxification by glyoxalase system: a survival strategy during environmental stresses. Physiology and Molecular Biology of Plants 11: 1–11.

  • ———, ——— & S. K. Sopory. 2008. An overview on the role of methylglyoxal and glyoxalases in plants. Drug Metabol Drug Interact 23:51–68.

  • Yamaguchi-Shinozaki, K. & K. Shinozaki. 2006. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review Plant Biology 57: 781–803.

    Article  CAS  Google Scholar 

  • Zhang, H. X., J. N. Hodson, J. P. Williams & E. Blumwald. 2001. Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased sodium accumulation. Proceedings of the National Academy of Science of the United States of America 98: 12832–12836.

    Article  CAS  Google Scholar 

  • Zhang, Y., L. Xu, X. Zhu, Y. Gong, F. Xiang, X. Sun & L. Liu. 2013. Proteomic analysis of heat stress response in leaves of radish (Raphanus sativus L.). Plant Molecular Biology Reports 31: 195–203.

    Article  Google Scholar 

  • Zhu, J. K. 2002. Salt and drought stress signal transduction in plants. Annual Review Plant Biology 53: 247–273.

    Article  CAS  Google Scholar 

  • Zuin, A., A. P. Vivancos, M. Sansó, Y. Takatsume, J. Ayté, Y. Inoue & E. Hidalgo. 2005. The glycolytic metabolite methylglyoxal activates Pap1 and Sty1 stress responses in Schizosaccharomyces pombe. Journal of Biological Chemistry 280: 36708–36713.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research is supported by National Natural Science Foundation of China (31360057) and Doctor Startup Foundation of Yunnan Normal University China (01200205020503099). We appreciate the reviewers and editors for their exceptionally helpful comments about the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Guang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZG. Methylglyoxal and Glyoxalase System in Plants: Old Players, New Concepts. Bot. Rev. 82, 183–203 (2016). https://doi.org/10.1007/s12229-016-9167-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-016-9167-9

Keywords

Navigation