Skip to main content
Log in

Exogenous jasmonic acid modulates the physiology, antioxidant defense and glyoxalase systems in imparting drought stress tolerance in different Brassica species

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

This study examined the ability of jasmonic acid (JA) to enhance drought tolerance in different Brassica species in terms of physiological parameters, antioxidants defense, and glyoxalase system. Ten-day-old seedlings were exposed to drought (15 % polyethylene glycol, PEG-6000) either alone or in combination with 0.5 mM JA. Drought significantly increased lipoxygenase activity and oxidative stress, levels of malondialdehyde and H2O2. Drought reduced seedling biomass, chlorophyll (chl) content, and leaf relative water content (RWC). Drought increased proline, oxidized ascorbate (DHA) and glutathione disulfide (GSSG) levels. Drought affected different species differently: in B. napus, catalase (CAT) and glyoxalase II (Gly II) activities were decreased, while glutathione-S-transferase (GST) and glutathione peroxidase (GPX) activities were increased in drought-stressed compared to unstressed plants; in B. campestris, activities of glutathione reductase (GR), glyoxalase I (Gly I), GST, and GPX were increased, monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), CAT and other enzymes were decreased; in B. juncea, activities of ascorbate peroxidase, GR, GPX, Gly I were increased; Gly II activity was decreased and other enzymes did not change. Spraying drought-stressed seedlings with JA increased GR and Gly I activities in B. napus; increased MDHAR activity in B. campestris; and increased DHAR, GR, GPX, Gly I and Gly II activities in B. juncea. JA improved fresh weight, chl, RWC in all species, dry weight increased only in B. juncea. Brassica juncea had the lowest oxidative stress under drought, indicating its natural drought tolerance capacity. The JA improved drought tolerance of B. juncea to the highest level among studied species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AO:

Ascorbate oxidase

APX:

Ascorbate peroxidase

BSA:

Bovine serum albumin

CAT:

Catalase

CDNB:

1-Chloro-2,4-dinitrobenzene

chl:

Chlorophyll

DHA:

Dehydroascorbate

DHAR:

Dehydroascorbate reductase

DTNB:

5,5′-Dithio-bis(2-nitrobenzoic acid)

EDTA:

Ethylenediaminetetraacetic acid

Gly I:

Glyoxalase I

Gly II:

Glyoxalase II

GR:

Glutathione reductase

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

GPX:

Glutathione peroxidase

GST:

Glutathione S-transferase

JA:

Jasmonic acid (JA)

LOX:

Lipoxygenase

MDA:

Malondialdehyde

MDHA:

Monodehydroascorbate

MDHAR:

Monodehydroascorbate reductase

MG:

Methylglyoxal

NADPH:

Nicotinamide adenosine dinucleotide phosphate

NTB:

2-Nitro-5-thiobenzoic acid

PEG:

Polyethylene glycol

Pro:

Proline

ROS:

Reactive oxygen species

RWC:

Relative water content

SLG:

S-d-Lactoylglutathione

TBA:

Thiobarbituric acid

TCA:

Trichloroacetic acid

References

  • Abbaspour H, Saeidi-Sar S, Afshari H (2011) Improving drought tolerance of Pistacia vera L. seedlings by arbuscular mycorrhiza under green house conditions. J Med Plants Res 5:7065–7072

    Article  CAS  Google Scholar 

  • Addinsoft (2013) XLSTAT 2013 v.2013.6.03: data analysis and statistics software for Microsoft Excel. Addinsoft, Paris

    Google Scholar 

  • Alam MM, Hasanuzzaman M, Nahar K, Fujita M (2013) Exogenous salicylic acid ameliorates short-term drought stress in mustard (Brassica juncea L.) seedlings by up-regulating the antioxidant defense and glyoxalase system. Aust J Crop Sci 7:1053–1063

    CAS  Google Scholar 

  • Alam MM, Hasanuzzaman M, Nahar K, Fujita M (2014) Exogenous ascorbic acid-induced alleviation of osmotic stress in three Brassica species through enhancement of growth and physiological parameters, antioxidant defense and glyoxalase systems. Biol Plant (in press)

  • Anjum SA, Xie X, Farooq M, Wang L, Xue L, Shahbaz M, Salhab J (2011) Effect of exogenous methyl jasmonate on growth, gas exchange and chlorophyll contents of soybean subjected to drought. Afr J Biotechnol 10:9640–9646

    CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aziz A, Larher F (1998) Osmotic stress induced changes in lipid composition and peroxidation in leaf discs of Brassica napus L. J Plant Physiol 153:754–762

    Article  CAS  Google Scholar 

  • Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15:413–428

    Google Scholar 

  • Bates LS, Waldren RP, Teari D (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bideshki A, Arvin MJ (2013) Interactive effects of methyl jasmonate (MJ) and indole-3 butyric acid (IBA) on growth and bio chemical parameters, bulb and allicin yield of garlic (Allium sativum L.) under drought stress in Iran. Int J Agric Res Rev 3:349–360

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, Mare C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrative view from breeding to genomics. Field Crop Res 105:1–14

    Article  Google Scholar 

  • Chen Z, Young TE, Ling J, Chang SC, Gallie DR (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci USA 100:3525–3530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Creighton DJ, Migliorini M, Pourmotabbed T, Guha MK (1988) Optimization of efficiency in the glyoxalase pathway. Biochemistry 27:7376–7384

    Article  CAS  PubMed  Google Scholar 

  • Din J, Khan SU, Ali I, Gurmani AR (2011) Physiological and agronomic response of canola varieties to drought stress. J Anim Plant Sci 21:78–82

    Google Scholar 

  • Dixon DP, Skipsey M, Edwards R (2010) Roles for glutathione transferases in plant secondary metabolism. Phytochemistry 71:338–350

    Article  CAS  PubMed  Google Scholar 

  • Doderer A, Kokkelink I, van der Veen S, Valk B, Schram A, Douma A (1992) Purification and characterization of two lipoxygenase isoenzymes from germinating barley. Biochim Biophys Acta 112:97–104

    Article  Google Scholar 

  • Elia AC, Galarini R, Taticchi MI, Dorr AJM, Mantilacci L (2003) Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotoxicol Environ Saf 55:162–167

    Article  CAS  PubMed  Google Scholar 

  • El-Shabrawi H, Kumar B, Kaul T, Reddy MK, Singla-Pareek SL, Sopory SK (2010) Redox homeostasis, antioxidant defense, and methylglyoxal detoxification as markers for salt tolerance in Pokkali rice. Protoplasma 245:85–96

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Plazaola JI, Hernández A, Olano JM, Becerril JM (2003) The operation of the lutein epoxide cycle correlates with energy dissipation. Funct Plant Biol 30:319–324

    Article  CAS  Google Scholar 

  • Garg N, Manchanda G (2009) ROS generation in plants: boon or bane? Plant Biosyst 143:8–96

    Article  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gupta M, Sharma P, Sarin NB, Sinha AK (2009) Differential response of arsenic stress in two species of Brassica juncea L. Chemosphere 74:1201–1208

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Fujita M (2011) Selenium pretreatment up-regulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biol Trace Elem Res 143:1758–1776

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Fujita M (2013) Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicology 22:584–596

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2010) Physiological and biochemical mechanisms of nitric oxide induced abiotic stress tolerance in plants. Am J Plant Physiol 5:295–324

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2011a) Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings. Plant Biotechnol Rep 5:353–365

    Article  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2011b) Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biol Trace Elem Res 143:1704–1721

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2012a) Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by upregulating antioxidant defense and methylglyoxal detoxification systems. Biol Trace Elem Res 149:248–261

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Teixeira da Silva JA, Fujita M (2012b) Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Venkateswarlu B, Shanker SC, Maheswari M (eds) Crop stress and its management: perspectives and strategies. Springer, New York, pp 261–315

    Chapter  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Fujita M (2012c) Exogenous nitric oxide alleviates high temperature induced oxidative stress in wheat (Triticum aestivum) seedlings by modulating the antioxidant defense and glyoxalase system. Aust J Crop Sci 6:1314–1323

    CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    Article  PubMed Central  PubMed  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1–11

    Article  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Nakano Y, Asada K (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in the regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25:385–395

    CAS  Google Scholar 

  • Hossain MZ, Hossain MD, Fujita M (2006) Induction of pumpkin glutathione S-transferase by different stresses and its possible mechanisms. Biol Plant 50:210–218

    Article  CAS  Google Scholar 

  • Huang C, He W, Guo J, Chang X, Su P, Zhang L (2005) Increased sensitivity to salt stress in ascorbate-deficient Arabidopsis mutant. J Exp Bot 56:3041–3049

    Article  CAS  PubMed  Google Scholar 

  • Jaleel CA, Gopi R, Panneerselvam R (2008a) Growth and photosynthetic pigments responses of two varieties of Catharanthus roseus to triadimefon treatment. C R Biol 331:272–277

    Article  PubMed  Google Scholar 

  • Jaleel CA, Gopi R, Sankar B, Gomathinayagam M, Panneerselvam R (2008b) Differential responses in water use efficiency in two varieties of Catharanthus roseus under drought stress. C R Biol 331:42–47

    Article  PubMed  Google Scholar 

  • Jaleel CA, Manivannan P, Lakshmanan GMA, Gomathinayagam M, Panneerselvam R (2008c) Alterations in morphological parameters and photosynthetic pigment responses of Catharanthus roseus under soil water deficits. Colloids Surf B Biointerfaces 61:298–303

    Article  CAS  PubMed  Google Scholar 

  • Jaleel CA, Manivannan P, Wahid A, Farooq M, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11:100–105

    Google Scholar 

  • Kabiri R, Farahbakhsh H, Nasibi F (2012) Salicylic acid ameliorates the effects of oxidative stress induced by water deficit in hydroponic culture of Nigella sativa. Am-Euras J Agric Environ Sci 12:1420–1425

    CAS  Google Scholar 

  • Khanna-Chopra R, Selote DS (2007) Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than-susceptible wheat cultivar under field conditions. Environ Exp Bot 60:276–283

    Article  CAS  Google Scholar 

  • Kim EH, Kim YS, Park SH, Koo YK, Choi YD, Chung YY, Lee IJ, Kim JK (2009) Methyl jasmonate reduces grain yield by mediating stress signals to alter spikelet development in rice. Plant Physiol 149:1751–1760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kirkham MB (2005) Principles of soil and plant water relations. Elsevier, Amsterdam

    Google Scholar 

  • Lee TM, Lur HS, Lin VH, Chu C (1996) Physiological and biochemical changes related to methyl jasmonate-induced chilling tolerance of rice Oryza sativa L. Plant, Cell Environ 19:65–74

    Article  CAS  Google Scholar 

  • Mahmood M, Bidabadi SS, Ghobadi C, Gray DJ (2012) Effect of methyl jasmonate treatments on alleviation of polyethylene glycol-mediated water stress in banana (Musa acuminata cv. ‘Berangan’, AAA) shoot tip cultures. Plant Growth Regul 68:161–169

    Article  CAS  Google Scholar 

  • Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391:202–216

    Article  Google Scholar 

  • Molassiotis A, Sotiropoulos T, Tanou G, Diamantidis G, Therios I (2006) Boron induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM9 (Malus domestica Borkh). Environ Exp Bot 56:54–62

    Article  CAS  Google Scholar 

  • Mustafiz A, Sahoo KK, Singla-Pareek SL, Sopory SK (2010) Metabolic engineering of glyoxalase pathway for enhancing stress tolerance in plants. Methods Mol Biol 639:95–118

    Article  CAS  PubMed  Google Scholar 

  • Nafie E, Hathout T, Mokadem ASA (2011) Jasmonic acid elicits oxidative defense and detoxification systems in Cucumis melo L. cells. Braz J Plant Physiol 23:161–174

    Article  CAS  Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam MM, Fujita M (2013) Exogenous glutathione-induced drought stress tolerance in Vigna radiata seedlings through enhanced antioxidant defense and methylglyoxal system. In: Interdrought IV conference, Perth, Australia, September 02–September 09, 2013

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Noctor G, Gomez L, Vanacker H, Foyer CH (2002) Interactions between biosynthesis, compartmentation, and transport in the control of glutathione homeostasis and signalling. J Exp Bot 53:1283–1304

    Article  CAS  PubMed  Google Scholar 

  • Norastehnia A, Nojavan-Asghari M (2006) Effect of methyl jasmonate on the enzymatic antioxidant defense system in maize seedlings subjected to paraquat. Asian J Plant Sci 5:17–23

    Article  CAS  Google Scholar 

  • Norastehnia A, Sajedi RH, Nojavan-Asghari M (2007) Inhibitory effects of methyl jasmonate on seed germination in maize (Zea mays L.): effect on amylase activity and ethylene production. Gen Appl Plant Physiol 33:13–23

    CAS  Google Scholar 

  • Pandey HC, Baig MJ, Bhatt RK (2012) Effect of moisture stress on chlorophyll accumulation and nitrate reductase activity at vegetative and flowering stage in Avena species. Agric Sci Res J 2:111–118

    Google Scholar 

  • Paradiso A, Berardino R, de Pinto M, di Toppi LS, Storelli FT, de Gara L (2008) Increase in ascorbate–glutathione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants. Plant Cell Physiol 49:362–374

    Article  CAS  PubMed  Google Scholar 

  • Pazoki AR, Rad AHS, Habibi D, Paknejad F, Kobraee S, Hadayat N (2010) Effect of drought stress and selenium spraying on superoxide dismotase activity of winter rapeseed (Brassica napus L.) cultivars. World Acad Sci Eng Technol 44:688–691

    Google Scholar 

  • Principato GB, Rosi G, Talesa V, Govannini E, Uolila L (1987) Purification and characterization of two forms of glyoxalase II from rat liver and brain of Wistar rats. Biochem Biophys Acta 911:349–355

    CAS  PubMed  Google Scholar 

  • Rad AHS (2012) Study on drought stress tolerance in rapeseed varieties based on drought stress tolerance indices. Int J Eng Res Appl 2:1168–1173

    Google Scholar 

  • Sánchez-Rodríguez E, Rubio-Wilhelmi MDM, Blasco B, Leyva R, Romero L, Ruiz JM (2012) Antioxidant response resides in the shoot in reciprocal grafts of drought-tolerant and drought-sensitive cultivars in tomato under water stress. Plant Sci 188–189:89–96

    Article  PubMed  Google Scholar 

  • Saraswathi SG, Paliwal K (2011) Drought induced changes in growth, leaf gas exchange and biomass production in Albizia lebbeck and Cassia siamea seedlings. J Environ Biol 32:173–178

    PubMed  Google Scholar 

  • Sasaki-Sekimoto Y, Taki N, Obayashi T (2005) Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis. Plant J 44:653–668

    Article  CAS  PubMed  Google Scholar 

  • Shan C, Liang Z (2010) Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Plant Sci 178:130–139

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46:209–221

    Article  CAS  Google Scholar 

  • Sorial ME, El-Gamal SM, Gendy AA (2010) Response of sweet basil to jasmonic acid application in relation to different water supplies. Biosci Res 7:39–47

    Google Scholar 

  • Ueda J, Saniewski J (2006) Methyl jasmonate-induced stimulation of chlorophyll formation in the basal part of tulip bulbs kept under natural light conditions. J Fruit Ornam Plant Res 14:199–210

    CAS  Google Scholar 

  • Vahdati K, Lotfi N (2013) Abiotic stress tolerance in plants with emphasizing on drought and salinity stresses in walnut. In: Vahdati K, Leslie C (eds) Abiotic stress—plant responses and applications in agriculture. InTech, Rijeka, pp 307–365

    Chapter  Google Scholar 

  • Vranova E, Inze D, Van Brensegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236

    Article  CAS  PubMed  Google Scholar 

  • Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Close TJ (2007) Large-scale expression profiling and physiological characterization of jasmonic acid-mediated adaptation of barley to salinity stress. Plant, Cell Environ 30:410–421

    Article  CAS  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Ray M, Reddy MK, Sopory SK (2005) Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. FEBS Lett 579:6265–6271

    Article  CAS  PubMed  Google Scholar 

  • Yu CW, Murphy TM, Lin CH (2003) Hydrogen peroxide-induces chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. Funct Plant Biol 30:955–963

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan for financial supports. We acknowledge Dr. Md. Motiar Rohman, Senior Scientific Officer, Bangladesh Agricultural Research Institute for providing Brassica seeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Fujita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, M.M., Nahar, K., Hasanuzzaman, M. et al. Exogenous jasmonic acid modulates the physiology, antioxidant defense and glyoxalase systems in imparting drought stress tolerance in different Brassica species. Plant Biotechnol Rep 8, 279–293 (2014). https://doi.org/10.1007/s11816-014-0321-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-014-0321-8

Keywords

Navigation