Skip to main content
Log in

Proteomic Analysis of Heat Stress Response in Leaves of Radish (Raphanus sativus L.)

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

High temperature is one of the most important abiotic factors influencing plant growth and development. Radish is a cool season vegetable crop sensitive to higher temperatures. Heat injuries may affect plant growth, and interfere with formation and thickening of the fleshy taproot. To characterize the heat-stress response in radish, 30-day-old radish seedlings were exposed to a temperature of 40 °C. Leaf samples were then collected from the seedlings at 0 h, 12 h and 24 h after temperature exposure. Proteins extracted from leaves were analyzed with two-dimensional electrophoresis (2-DE), and differentially expressed protein spots were identified by mass spectrometry (MS). In total, 11 differentially expressed proteins were identified successfully by MALDI-TOF MS. Of these, four were heat shock proteins (HSPs), four were related to energy and metabolism, two were related to redox homeostasis, and one was related to signal transduction. These proteins were analyzed further for mRNA levels, corresponding to differential levels of gene expression. The result showed that gene expression profiles at the transcriptional level were not completely consistent with those at translational levels. The differentially expressed heat stress response proteins identified, like small heat shock proteins together with energy and metabolism-related proteins, provide new insights into the molecular basis of plant responses to high temperature stresses in radish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrawal GK, Rakwal R (2006) Rice proteomics: a cornerstone for cereal food crop proteomes. Mass Spectrom Rev 25:1–53

    Article  PubMed  CAS  Google Scholar 

  • Bita CE, Zenoni S, Vriezen WH, Mariani C, Pezzotti M, Gerats T (2011) Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants. BMC Genomics 12:384. doi:10.1186/1471-2164-12-384

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cantero A, Barthakur S, Bushart TJ, Chou S, Morgan RO, Fernandez MP, Clark GB, Roux SJ (2006) Expression profiling of the Arabidopsis annexin gene family during germination, de-etiolation and abiotic stress. Plant Physiol Biochem 44:13–24

    Article  PubMed  CAS  Google Scholar 

  • Chandran D, Sharopova N, Ivashuta S, Gantt JS, VandenBosch KA, Samac DA (2008) Transcriptome profiling identified novel genes associated with aluminum toxicity, resistance and tolerance in Medicago truncatula. Planta 228:151–166

    Article  PubMed  CAS  Google Scholar 

  • Charng YY, Liu HC, Liu NY, Hsu FC, Ko SS (2006) Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation. Plant Physiol 140:1297–1305

    Article  PubMed  CAS  Google Scholar 

  • Chaurasia KC, Apte SK (2009) Over expression of the groESL operon enhances the heat and salinity stress tolerance of the nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. Appl Environ Microbiol 75:6008–6012

    Article  PubMed  CAS  Google Scholar 

  • Chen HY, Zhang JH, Wang LZ (1990) Study on the peroxidase, superoxide dismutase and heat tolerance of radish. Journal of Shanghai Jiaotong University (Agricultural Science) 8:265–268

    Google Scholar 

  • Chu P, Chen H, Zhou Y, Li Y, Ding Y, Jiang L, Tsang EWT, Wu K, Huang S (2012) Proteomic and functional analyses of Nelumbo nucifera annexins involved in seed thermotolerance and germination vigor. Planta 235:1271–1288. doi:10.1007/s00425-011-1573-y

    Google Scholar 

  • Coll A, Nadal A, Rossignol M, Puigdomènech P, Pla M (2011) Proteomic analysis of MON810 and comparable non-GM maize varieties grown in agricultural fields. Transgenic Res 20:939–949

    Article  PubMed  CAS  Google Scholar 

  • Ding CQ, You J, Liu ZH, Rehmani AMI, Wang SH, Li GH, Wang QS, Ding YF (2011) Proteomic analysis of low nitrogen stress-responsive proteins in roots of rice. Plant Mol Biol Rep 29:618–625

    Article  CAS  Google Scholar 

  • Divya K, Jami SK, Kirti PB (2010) Constitutive expression of mustard annexin, AnnBj1 enhances abiotic stress tolerance and fiber quality in cotton under stress. Plant Mol Biol 73:293–308

    Article  PubMed  CAS  Google Scholar 

  • Ferreira S, Hjerno K, Larsen M, Wingsle G (2006) Proteome profiling of Populus euphratica Oliv. upon heat stress. Ann Bot 98:361–377

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed  CAS  Google Scholar 

  • Gammulla CG, Pascovici D, Atwell BJ, Haynes PA (2010) Differential metabolic response of cultured rice (Oryza sativa L.) cells exposed to high- and low-temperature stress. Proteomics 10:3001–3019

    Article  PubMed  CAS  Google Scholar 

  • Granot D (2007) Role of tomato hexosekinase. Funct Plant Biol 34:564–570

    Article  CAS  Google Scholar 

  • Han F, Chen H, Li XJ, Yang MF, Liu GS, Shen SH (2009) A comparative proteomic analysis of rice seedlings under various high-temperature stresses. Biochim Biophys Acta 1794:1625–1634

    Article  PubMed  CAS  Google Scholar 

  • Hossain MA, Hossain MZ, Fujita M (2009) Stress-induced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene. Aust J Crop Sci 3:53–64

    CAS  Google Scholar 

  • Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF (2011) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 14:69–79

    Google Scholar 

  • Jagadish SV, Muthurajan R, Oane R, Wheeler TR, Heuer S, Bennett J, Craufurd PQ (2010) Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). J Exp Bot 61:143–156

    Article  PubMed  CAS  Google Scholar 

  • Jagadish SV, Muthurajan R, Rang ZW, Malo R, Heuer S, Bennett J, Craufurd PQ (2011) Spikelet proteomic response to tombined water deficit and heat stress in rice (Oryza sativa cv.N22). Rice 4:1–11

    Article  Google Scholar 

  • Jami SK, Clark GB, Turlapati SA, Handley C, Roux SJ, Kirti PB (2008) Ectopic expression of an annexin from Brassica juncea confers tolerance to abiotic and biotic stress treatments in transgenic tobacco. Plant Physiol Biochem 46:1019–1030

    Article  PubMed  CAS  Google Scholar 

  • Jiang C, Xu J, Zhang H, Zhang X, Shi J, Li M, Ming F (2009) A cytosolic classI small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to avariety of stresses to Escherichia coli, yeast and Arabidopsis thaliana. Plant Cell Environ 32:1046–1059

    Article  PubMed  CAS  Google Scholar 

  • Kang S, Chen S, Dai SJ (2010) Proteomics characteristics of rice leaves in response to environmental factors. Front Biol 5:246–254

    Article  CAS  Google Scholar 

  • Kim ST, Kim SG, Hwang DH, Kang SY, Kim HJ, Lee BH, Lee JJ, Kang KY (2004) Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea. Proteomics 4:3569–3578

    Article  PubMed  CAS  Google Scholar 

  • Kong F, Mao SJ, Jiang J, Wang JJ, Wang J, Fang XP, Wang YP (2011) Proteomic changes in newly synthesized Brassica napus allotetraploids and their early generations. Plant Mol Biol Rep 29:927–935

    Article  CAS  Google Scholar 

  • Kosová K, Vítámvás P, Prášil IT, Renaut J (2011) Plant proteome changes under abiotic stress-contribution of proteomics studies to understanding plant stress response. J Proteomics 74:1301–1322

    Article  PubMed  Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Doring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316

    Article  PubMed  CAS  Google Scholar 

  • Laohavisit A, Davies JM (2011) Annexins. New Phytol 189:40–53

    Article  PubMed  CAS  Google Scholar 

  • Lee DG, Ahsan N, Lee SH, Kang KY, Bahk JD, Lee IJ, Lee BH (2007) A proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics 7:3369–3383

    Article  PubMed  CAS  Google Scholar 

  • Ledsema NA, Kawabata S, Sugiyama N (2004) Effect of high temperature on protein expression in strawberry plants. Biologia Plant Arum 48:73–79

    Article  Google Scholar 

  • Lin FY, Xu JH, Shi JR, Li HW, Li B (2010) Molecular cloning and characterization of a novel glyoxalase I gene TaGlyI in wheat (Triticum aestivum L.). Mol Biol Rep 37:729–735

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Yang X, Fu Y, Zhang Y, Yan J, Song T, Rocheford T, Li J (2009) Proteomic analysis of early germs with high-oil and normal inbred lines in maize. Mol Biol Rep 36:813–821

    Article  PubMed  CAS  Google Scholar 

  • Neilson KA, Gammulla CG, Mirzaei M, Imin N, Haynes PA (2010) Proteomic analysis of temperature stress in plants. Proteomics 10:828–845

    Article  PubMed  CAS  Google Scholar 

  • Panchuk II, Zentgraf U, Volkov RA (2005) Expression of the APX gene family during leaf senescence of Arabidopsis thaliana. Planta 222:926–932

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro DT, Farias LP, Almeida JD, Kashiwabara PM, Silva-Filho MC (2005) Functional characterization of the thi1 promoter region from Arabidopsis thaliana. J Exp Bot 56:1797–1804

    Article  PubMed  CAS  Google Scholar 

  • Rinalducci S, Egidi MG, Karimzadeh G, Jazii FR, Zolla L (2011) Proteomic analysis of a spring wheat cultivar in response to prolonged cold stress. Electrophoresis 32:1807–1818

    Article  PubMed  CAS  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: Conserved and novel mechanisma. Annu Rev Plant Biol 57:675–709

    Article  PubMed  CAS  Google Scholar 

  • Sarkar S, Singhl MD, Yadav R, Arunkumar KP, Pittman GW (2011) Heat shock proteins: molecules with assorted functions. Front Biol 6:312–327

    CAS  Google Scholar 

  • Sato Y, Yokoya S (2008) Enhanced tolerance to drought stress in transgenic rice plants over expressing a small heat-shock protein, sHSP17.7. Plant Cell Rep 27:329–334

    Article  PubMed  CAS  Google Scholar 

  • Scafaro AP, Haynes PA, Atwell BJ (2010) Physiological and molecular changes in Oryza meridionalis Ng., a heat-tolerant species of wild rice. J Exp Bot 61:191–202

    Article  PubMed  CAS  Google Scholar 

  • Süle A, Vanrobaeys F, Hajó G, Van Beeumen J, Devreese B (2004) Proteomic analysis of small heat shock protein isoforms in barley shoots. Phytochemistry 65:1853–1863

    Article  PubMed  Google Scholar 

  • Tian Q, Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ, Yi EC, Dai HY, Thorsson V (2004) Integrated genomic and proteomic analyses of gene expression in mammalian cells. Mol Cell Proteomics 3:960–969

    Article  PubMed  CAS  Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620

    Article  CAS  Google Scholar 

  • Vuletić M, Šukalović V, Marković K, Maksimović JD (2010) Antioxidative system in maize roots as affected by osmotic stress and different nitrogen sources. Biologia Plant Arum 54:530–534

    Article  Google Scholar 

  • Wang ZF, Wang ZH, Shi L, Wang LJ, Xu FS (2010) Proteomic alterations of Brassica napus root in response to boron deficiency. Plant Mol Biol 74:265–278

    Article  PubMed  CAS  Google Scholar 

  • Wang L, He, Q (2005) Chinese radish. Scientific and Technical Documents Publishing House, Beijing

  • Xue Y, Peng R, Xiong A, Li X, Zha D, Yao Q (2010) Over-expression of heat shock protein gene hsp26 in Arabidopsis thaliana enhances heat tolerance. Biologia Plant Arum 54:105–111

    Article  CAS  Google Scholar 

  • Yang J, Yang YQ, Yang YP, Hu XY (2009) The sample preparation and the improvement method of two-dimensional electrophoresis of proteins from Antiaris toxicaria (Moraceae) seed. Acta Bot Yunnan 31:357–362

    Article  CAS  Google Scholar 

  • Yin N, Ma X, Zhang W, Feng D, Wang H, Kong L, Tian J (2012) Analysis of differential proteins induced by forchlorfenuron in wheat. Plant Mol Biol Rep 30:949–956. doi:10.1007/s11105-011-0403-5

    Google Scholar 

  • Zhang JW, Ma HQ, Chen S, Ji M, Perl A, Kovacs L, Chen SW (2009) Stress response proteins’ differential expression in embryogenic and non-embryogenic callus of Vitis vinifera L. cv. Cabernet Sauvignon—a proteomic approach. Plant Sci 177:103–113

    Article  CAS  Google Scholar 

  • Zhou Y, Chen H, Chu P, Li Y, Tan B, Ding Y, Tsang EWT, Jiang L, Wu K, Huang H (2012) NnHSP17.5, a cytosolic classII small heat shock protein gene from Nelumbo nucifera, contributes to seed germination vigor and seedling thermotolerance in transgenic Arabidopsis. Plant Cell Rep 31:379–389

    Article  PubMed  CAS  Google Scholar 

  • Zou J, Liu C, Chen X (2011) Proteomics of rice in response to heat stress and advances in genetic engineering for heat tolerance in rice. Plant Cell Rep 30:2155–2165

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the Program for NCET, MOE (NCET-10-047), the National Key Technologies R&D Program of China (2012BAD02B01), the National Natural Science Foundation of China (31171956), Key Technology R&D Program of Jiangsu Province (BE2010328) and the Priority Academic Program Development of Jiangsu Province (PAPD). We thank Dr. Mohamed Ibrahim at North Dakota State University, for his critical review and helpful comments during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiqin Gong or Liwang Liu.

Additional information

Yanyu Zhang and Liang Xu contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Xu, L., Zhu, X. et al. Proteomic Analysis of Heat Stress Response in Leaves of Radish (Raphanus sativus L.). Plant Mol Biol Rep 31, 195–203 (2013). https://doi.org/10.1007/s11105-012-0486-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-012-0486-7

Keywords

Navigation