Skip to main content
Log in

The Xerophyta viscosa Aldose Reductase (ALDRXV4) Confers Enhanced Drought and Salinity Tolerance to Transgenic Tobacco Plants by Scavenging Methylglyoxal and Reducing the Membrane Damage

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

We report the efficacy of an aldose reductase (ALDRXV4) enzyme from Xerophyta viscosa Baker in enhancing the prospects of plant’s survival under abiotic stress. Transgenic tobacco plants overexpressing ALDRXV4 cDNA showed alleviation of NaCl and mannitol-induced abiotic stress. The transgenic plants survived longer periods of water deficiency and salinity stress and exhibited improved recovery after rehydration as compared to the wild type plants. The increased synthesis of aldose reductase in transgenic plants correlated with reduced methylglyoxal and malondialdehyde accumulation and an elevated level of sorbitol under stress conditions. In addition, the transgenic lines showed better photosynthetic efficiency, less electrolyte damage, greater water retention, higher proline accumulation, and favorable ionic balance under stress conditions. Together, these findings suggest the potential of engineering aldose reductase levels for better performance of crop plants growing under drought and salt stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FW:

Fresh weight

MDA:

Malondialdehyde

MG:

Methylglyoxal

ROS:

Reactive oxygen species

RWC:

Relative water content

TW:

Turgid weight

WT:

Wild type

References

  1. Knight, H., & Knight, M. R. (2001). Abiotic stress signalling pathways: Specificity and cross-talk. Trends in Plant Science, 6, 262–267.

    Article  CAS  Google Scholar 

  2. Cushman, J. C., & Bohnert, H. J. (2000). Genomic approaches to plant stress tolerance. Current Opinion in Plant Biology, 3, 117–124.

    Article  CAS  Google Scholar 

  3. Yadav, S. K., Singla-Pareek, S. L., Ray, M., Reddy, M. K., & Sopory, S. K. (2005). Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochemical and Biophysical Research Communications, 337, 61–67.

    Article  CAS  Google Scholar 

  4. Pitzschke, A., Forzani, C., & Hirt, H. (2006). Reactive oxygen species signaling in plants. Antioxidants & Redox Signaling, 8, 1757–1764.

    Article  CAS  Google Scholar 

  5. Kalapos, M. P. (2008). The tandem of free radicals and methylglyoxal. Chemico-Biological Interactions, 171, 251–271.

    Article  CAS  Google Scholar 

  6. Thornalley, P. J. (1990). The glyoxalase system: New developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochemical Journal, 269, 1–11.

    CAS  Google Scholar 

  7. Vander Jagt, D. L., & Hunsaker, L. A. (2003). Methylglyoxal metabolism and diabetic complications: Roles of aldose reductase, glyoxalase-I, betaine aldehyde dehydro-genase and 2-oxoaldehyde dehydrogenase. Chemico-Biological Interactions, 143, 341–351.

    Article  Google Scholar 

  8. Bartels, D., & Nelson, D. (1994). Approaches to improve stress tolerance using molecular genetics. Plant, Cell and Environment, 17, 659–667.

    Article  CAS  Google Scholar 

  9. Jin, Y., & Penning, T. M. (2007). Aldo–keto reductases and bioactivation/detoxification. Annual Review of Pharmacology and Toxicology, 47, 263–292.

    Article  CAS  Google Scholar 

  10. Lee, S. P., & Chen, T. H. H. (1993). Molecular cloning of abscisic acid-responsive mRNAs expressed during the induction of freezing tolerance in bromegrass (Bromus inermis Leyss) suspension culture. Plant Physiology, 101, 1089–1096.

    Article  CAS  Google Scholar 

  11. Li, B., & Foley, M. E. (1995). Cloning and characterization of differentially expressed genes in imbibed dormant and after ripened Avena fatua embryos. Plant Molecular Biology, 29, 823–831.

    Article  CAS  Google Scholar 

  12. Turoczy, Z., Kis, P., Torok, K., Cserhati, M., Lendvai, A., Dudits, D., et al. (2011). Overproduction of a rice aldo–keto reductase increases oxidative and heat stress tolerance by malondialdehyde and methylglyoxal detoxification. Plant Molecular Biology, 75, 399–412.

    Article  CAS  Google Scholar 

  13. Mundree, S. G., Whittaker, A., Thomson, J. A., & Farrant, L. M. (2000). An aldose reductase homolog from the resurrection plant Xerophyta viscosa Baker. Planta, 211, 693–700.

    Article  CAS  Google Scholar 

  14. Höfgen, R., & Willmitzer, L. (1988). Storage of competent cells for Agrobacterium transformation. Nucleic Acids Research, 16, 9877.

    Article  Google Scholar 

  15. Horsch, R. B., Fry, J. E., Hoffmann, N. L., Eichholtz, D., Rogers, S. G., & Fraley, R. T. (1985). A simple and general method for transferring genes into plants. Science, 227, 1229–1231.

    Article  CAS  Google Scholar 

  16. Rogers, S. O., & Bendich, A. J. (1994). Extraction of total cellular DNA from plants, algae and fungi. In S. B. Gelvin & R. A. Schilperoort (Eds.), Plant molecular biology manual, D1 (pp. 1–8). Dordrecht: Kluwer Academic Press.

    Google Scholar 

  17. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning. A laboratory manual. New York: Cold Spring Harbor.

    Google Scholar 

  18. Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  19. Towbin, H., Staehelin, T., & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proceedings of the National academy of Sciences of the United States of America, 76, 4350–4354.

    Article  CAS  Google Scholar 

  20. Arnon, D. J. (1949). Copper enzymes in isolated chloroplasts: Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1–15.

    Article  CAS  Google Scholar 

  21. Sairam, R. K., & Srivastava, G. C. (2002). Changes in antioxidant activity in subcellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Science, 162, 897–904.

    Article  CAS  Google Scholar 

  22. Hayman, S., & Kinoshita, J. H. (1965). Isolation and properties of lens aldose reductase. Journal of Biological Chemistry, 240, 877–882.

    CAS  Google Scholar 

  23. Pommerrenig, B., Papini-Terzi, F. S., & Sauer, N. (2007). Differential regulation of sorbitol and sucrose loading into the phloem of Plantago major in response to salt stress. Plant Physiology, 144, 1029–1038.

    Article  CAS  Google Scholar 

  24. Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205–207.

    Article  CAS  Google Scholar 

  25. Fan, L., Zheng, S., & Wang, X. (1997). Antisense suppression of phospholipase D alpha retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves. Plant Cell, 9, 2183–2196.

    CAS  Google Scholar 

  26. Sherwin, H., & Farrant, J. M. (1996). Differences in rehydration of three desiccation-tolerant angiosperm species. Annals of Botany, 78, 703–710.

    Article  Google Scholar 

  27. Oliver, M. J., & Bewley, J. D. (1997). Desiccation-tolerance of plant tissues: A mechanistic overview. Horticultural Reviews, 18, 171–213.

    Google Scholar 

  28. Kolb, N. S., Hunsaker, L. A., & Vander Jagt, D. L. (1994). Aldose reductase-catalyzed reduction of acrolein: Implications in cyclophosphamide toxicity. Molecular Pharmacology, 45, 797–801.

    CAS  Google Scholar 

  29. Colrat, S., Latche, A., Guis, M., Pech, J. C., Bouzayen, M., Fallot, J., et al. (1999). Purification and characterization of a NADPH-dependent aldehyde reductase from mung bean that detoxifies eutypine, a toxin from Eutypa lata. Plant Physiology, 119, 621–626.

    Article  CAS  Google Scholar 

  30. Oberschall, A., Deak, M., Torok, K., Sass, L., Vass, I., Kovacs, I., et al. (2000). A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stresses. Plant Journal, 24, 437–446.

    Article  CAS  Google Scholar 

  31. Hideg, É., Nagy, T., Oberschall, A., Dudits, D., & Vass, I. (2003). Detoxification function of aldose/aldehyde reductase during drought and ultraviolet-B (280–320 nm) stresses. Plant, Cell and Environment, 26, 513–522.

    Article  CAS  Google Scholar 

  32. Vander Jagt, D. L., Hunsaker, L. A., Vander Jagt, T. J., Gomez, M. S., Gonzales, D. M., Deck, L. M., et al. (1997). Inactivation of glutathione reductase by 4-hydroxynonenal and other endogenous aldehydes. Biochemical Pharmacology, 53, 1133–1140.

    Article  CAS  Google Scholar 

  33. Hegedus, A., Erdei, S., Janda, T., Toth, E., Horvath, G. V., & Dudits, D. (2004). Transgenic tobacco plants overproducing alfalfa aldose/aldehyde reductase show higher tolerance to low temperature and cadmium stress. Plant Science, 166, 1329–1333.

    Article  CAS  Google Scholar 

  34. Abordo, E. A., Minhas, H. S., & Thornalley, P. J. (1999). Accumulation of alpha-oxoaldehydes during oxidative stress: A role in cytotoxicity. Biochemical Pharmacology, 58, 641–648.

    Article  CAS  Google Scholar 

  35. Martins, A. M., Cordeiro, C. A., & Ponces Freire, A. M. (2001). In situ analysis of methylglyoxal metabolism in Saccharomyces cerevisiae. FEBS Letters, 499, 41–44.

    Article  CAS  Google Scholar 

  36. Singla-Pareek, S. L., Yadav, S. K., Pareek, A., Reddy, M. K., & Sopory, S. K. (2006). Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiology, 140, 613–623.

    Article  CAS  Google Scholar 

  37. Mishra, R. K., & Singhal, G. S. (1992). Function of photosynthetic apparatus of intact wheat leaves under high light and heat stress and its relationship with peroxidation of thylakoid lipids. Plant Physiology, 98, 1–6.

    Article  CAS  Google Scholar 

  38. Harbinson, J., Genty, B., & Baker, N. R. (1989). Relationship between the quantum efficiencies of photosystems I and II in pea leaves. Plant Physiology, 90, 1029–1034.

    Article  CAS  Google Scholar 

  39. Ashraf, M., & Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166, 3–16.

    Article  CAS  Google Scholar 

  40. Hare, P. D., Cress, W. A., & Van Staden, J. (1998). Dissecting the roles of osmolyte accumulation during stress. Plant, Cell and Environment, 21, 535–553.

    Article  CAS  Google Scholar 

  41. Hanson, A. D., & Burnet, M. (1994). Evolution and metabolic engineering of osmoprotectant accumulation in higher plants. In J. H. Cherry (Ed.), Cell biology: Biochemical and cellular mechanism of stress tolerance in plants (pp. 291–302). Berlin: Springer.

    Chapter  Google Scholar 

  42. Rus, A., Yokoi, S., Sharkhuu, A., Reddy, M., Lee, B. H., Matsumoto, T. K., et al. (2001). AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proceedings of the National academy of Sciences of the United States of America, 98, 14150–14155.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Jennifer A. Thomson, University of Cape Town, South Africa for ALDRXV4 cDNA and Dr. Sylvia de Sousa, Universidade Federal de Sao Joao del-Rei, Brasil for aldose reductase antibodies. Dr. Mikail Pooggin’s help in training some members of NBS’ group during their visits to FMI and University of Basel, Switzerland, supported by Indo-Swiss Collaboration in Biotechnology, is duly acknowledged. Dr. S.G. Mundree is acknowledged for discussions related to this manuscript. DK and PS are thankful to CSIR and UGC, India, respectively, for fellowships. MAY is a UGC-Dr. D.S. Kothari Postdoctoral Fellow. This work was funded by DST, India (Grant No. SR/SO/BB-37/2008). The research in the lab of NBS is funded by grants from UGC-CAS, DST-FIST, and DST-PURSE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neera Bhalla Sarin.

Additional information

Deepak Kumar and Preeti Singh contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, D., Singh, P., Yusuf, M.A. et al. The Xerophyta viscosa Aldose Reductase (ALDRXV4) Confers Enhanced Drought and Salinity Tolerance to Transgenic Tobacco Plants by Scavenging Methylglyoxal and Reducing the Membrane Damage. Mol Biotechnol 54, 292–303 (2013). https://doi.org/10.1007/s12033-012-9567-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9567-y

Keywords

Navigation