Skip to main content

Advertisement

Log in

Recent Advances in Biosensors for Detection of Chemical Contaminants in Food — a Review

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

In recent decades safety of food has played a pivotal role from raw material till it reaches the consumer. The food consumed may contain unwanted contaminants, which may impose severe health implications on the consumers. Instrumental techniques like HPLC, GCMS, LCMS, AAS, FTIR, and NIRS detect the contaminants, but the need for low cost, continuous, specific, real-time, and rapid contaminant detection method is required. To meet these essentials, a biosensor stands as a powerful tool. Its applications express more scope and potential with progress in research, including studies on biosensing and uploading the data to the internet cloud. Several advancements have been made in biosensors for detecting multi-components in the food system. This review provides insights into the recent advancements made in the development of biosensors to detect chemical contaminants in foods for ensuring safety and quality. This article emphasizes the notable chemical contaminants, including naturally available substances, intentional or unintentionally added substances like pesticides, heavy metals in the fresh produces, veterinary drug residues like antibiotic residues in animal products, and food additives in processed food products.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adeloju SB, Hussain S (2016) Potentiometric sulfite biosensor based on entrapment of sulfite oxidase in a polypyrrole film on a platinum electrode modified with platinum nanoparticles. Microchim Acta 183:1341–1350

    Article  CAS  Google Scholar 

  • Ahmad R, Bhat KS, Ahn M-S, Hahn Y-B (2017) Fabrication of a robust and highly sensitive nitrate biosensor based on directly grown zinc oxide nanorods on a silver electrode. New J Chem 41:10992–10997

    Article  CAS  Google Scholar 

  • Albanese D, Di M, Alessio C (2010) Screen printed biosensors for detection of nitrates in drinking water. Computer Aided Chemical Engineering 28:283-288. https://doi.org/10.1016/S1570-7946(10)28048-3

  • Añorga L, Martinez-Paredes G, Parrilla M, Jubete E, Grande HJ, Ramos E, Salleres S, Jaureguibeitia A, Albizu A (2017) SO2 safe - a fast and accurate electrochemical biosensor for sulphite. Metrology Promoting Harmonization& Standardization in Food & Nutrition:142–145. 1st – 4th october 2017, KEDEA building, AUTH, Thessaloniki, Greece

  • Anumol T, Lehotay SJ, Stevens J, Zweigenbaum J (2017) Comparison of veterinary drug residue results in animal tissues by ultrahigh-performance liquid chromatography coupled to triple quadrupole or quadrupole – time-of-flight tandem mass spectrometry after different sample preparation methods, including use of a commercial lipid removal product. Analytical and Bioanalytical Chemistry, 409:2639-2653. https://doi.org/10.1007/s00216-017-0208-y

  • Aranda PR, Pacheco PH, Olsina RA, Martinez LD, Gil RA (2009) Total and inorganic mercury determination in biodiesel by emulsion sample introduction and FI-CV-AFS after multivariate optimization. J Anal at Spectrom 24:1441–1445

    Article  CAS  Google Scholar 

  • Ardunini F, Ricci F, Tuta CT, Moscone D, Amine A, Palleschi G (2006) Detection of carbamic and organophosphorous pesticides in water samples using a cholinesterase biosensor based on Prussian Bluemodified screen-printed electrode. Analytica Chimica Acta 580(2):155-162

  • Ashley J, Feng X, Sun Y (2018) A multifunctional molecularly imprinted polymer-based biosensor for direct detection of doxycycline in food samples. Talanta 182:49–54

    Article  CAS  PubMed  Google Scholar 

  • Ashoka S, Peake BM, Bremner G, Hageman KJ, Reid MR (2009) Comparison of digestion methods for ICP-MS determination of trace elements in fish tissues. Anal Chim Acta 653:191–199

    Article  CAS  PubMed  Google Scholar 

  • Attar A, Ghica ME, Amine A, Brett CMA (2014) Poly (neutral red) based hydrogen peroxide biosensor for chromium determination by inhibition measurements. J Hazard Mater 279:348–355

    Article  CAS  PubMed  Google Scholar 

  • Babkina SS, Ulakhovich NA (2004) Amperometric biosensor based on denatured DNA for the study of heavy metals complexing with DNA and their determination in biological, water and food samples. Bioelectrochemistry 63:261–265. https://doi.org/10.1016/j.bioelechem.2003.11.006

    Article  CAS  PubMed  Google Scholar 

  • Bagchi S, Behera M (2020) Assessment of heavy metal removal in different bioelectrochemical systems: a review. J Hazard Toxic Radioact Waste 24:4020010

    Article  Google Scholar 

  • Barman SC, Hossain MF, Yoon H, Park JY (2018) Carboxyl terminated reduced graphene oxide (Crbxl-RGO) and Pt nanoparticles based ultra-sensitive and selective electrochemical biosensor for glutamate detection. J Electrochem Soc 165:B296

    Article  CAS  Google Scholar 

  • Batra B, Yadav M, Pundir CS (2016) l-glutamate biosensor based on l-glutamate oxidase immobilized onto ZnO nanorods/polypyrrole modified pencil graphite electrode. Biochem Eng J 105:428–436

    Article  CAS  Google Scholar 

  • Berezhetskyy AL, Sosovska OF, Durrieu C, Chovelon J-M, Dzyadevych SV, Tran-Minh C (2008) Alkaline phosphatase conductometric biosensor for heavy-metal ions determination. IRBM 29(2-3):136-140. https://doi.org/10.1016/j.rbmret.2007.12.007

  • Besharati M, Hamedi J, Hosseinkhani S, Saber R (2019) A novel electrochemical biosensor based on TetX2 monooxygenase immobilized on a nano-porous glassy carbon electrode for tetracycline residue detection. Bioelectrochemistry 128:66-73.https://doi.org/10.1016/j.bioelechem.2019.02.010

  • Beyene T (2016) Veterinary science & technology veterinary drug residues in food-animal products : its risk factors and potential effects on public health 7:1–7. https://doi.org/10.4172/2157-7579.1000285

  • Brabander HF, De Noppe H, Verheyden K, Vanden Bussche J, Wille K, Okerman L, Vanhaecke L, Reybroeck W, Ooghe S, Croubels S (2009) Residue analysis : future trends from a historical perspective 1216:7964–7976. https://doi.org/10.1016/j.chroma.2009.02.027

  • Leporati M, Capra P, Brizio P, Ciccotelli V, Abete MC, Vicenti M (2012) Fit-for-purpose in veterinary drug residue analysis : development and validation of an LC-MS / MS method for the screening of thirty illicit drugs in bovine urine: 400–409.https://doi.org/10.1002/jssc.201100691

  • Caetano J, Machado SAS (2008) Determination of carbaryl in tomato “in natura” using an amperometric biosensor based on the inhibition of acetylcholinesterase activity. Sensors Actuators B Chem 129:40–46

    Article  CAS  Google Scholar 

  • Camara-Martos F, da Costa J, Justino CIL, Cardoso S, Duarte AC, Rocha-Santos T (2016) Disposable biosensor for detection of iron (III) in wines. Talanta 154:80–84

    Article  CAS  PubMed  Google Scholar 

  • Can F, Ozoner SK, Ergenekon P, Erhan E (2012) Amperometric nitrate biosensor based on carbon nanotube/polypyrrole/nitrate reductase biofilm electrode. Mater Sci Eng C 32:18–23

    Article  CAS  Google Scholar 

  • Cao Y, Liu H, Qin N, Ren X, Zhu B, Xia X (2020) Impact of food additives on the composition and function of gut microbiota: a review. Trends Food Sci Technol 99:295–310. https://doi.org/10.1016/j.tifs.2020.03.006

    Article  CAS  Google Scholar 

  • Cesarino I, Moraes FC, Lanza MRV, Machado SAS (2012) Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline–carbon nanotubes. Food Chem 135:873–879

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Yu Q, Fu W, Chen X, Zhang Q, Dong S, Chen H, Zhang S (2020) A highly sensitive amperometric glutamate oxidase microbiosensor based on a reduced graphene oxide/prussian blue nanocube/gold nanoparticle composite film-modified pt electrode. Sensors 20:2924

    Article  CAS  PubMed Central  Google Scholar 

  • Chen X, Wang J, Shen HY, Su X, Cao Y, Li T, Gan N (2019) Microfluidic chip for multiplex detection of trace chemical contaminants based on magnetic encoded aptamer probes and multibranched DNA nanostructures as signal tags. ACS Sensors 4:2131–2139. https://doi.org/10.1021/acssensors.9b00963

    Article  CAS  PubMed  Google Scholar 

  • Cocker J, Mason HJ, Garfitt SJ, Jones K (2002) Biological monitoring of exposure to organophosphate pesticides. Toxicol Lett 134:97–103. https://doi.org/10.1016/S0378-4274(02)00168-6

    Article  CAS  PubMed  Google Scholar 

  • Collings AF, Caruso F (1997) Biosensors: recent advances. Reports Prog Phys 60:1397

    Article  CAS  Google Scholar 

  • Dalkıran B, Erden PE, Kılıç E (2017) Graphene and tricobalt tetraoxide nanoparticles based biosensor for electrochemical glutamate sensing. Artif. cells, nanomedicine. Biotechnol 45:340–348

    Google Scholar 

  • Do NascimentoMarreiro ASS, Teixeira PRS, de Oliveria Farias EA, e Sousa BF, de Leite Moura Sérvulo KB, da Silva DA, Eiras C (2020) Babassu mesocarp (Orbignya phalerata Mart) nanoparticle-based biosensors for indirect sulfite detection in industrial juices. J Solid State Electrochem 24:1143–1155

    Article  CAS  Google Scholar 

  • Ensafi AA, Jamei HR, Heydari-bafrooei E, Rezaei B (2014) Development of a voltammetric procedure based on DNA interaction for sensitive monitoring of chrysoidine, a banned dye, in foods and textile effluentsSens. Actuators, B 202:224-231

  • Faisal M, Abu U (2018) Reduced graphene oxide / polypyrrole / nitrate reductase deposited glassy carbon electrode ( GCE / RGO / ppy / NR ): biosensor for the detection of nitrate in wastewater. Appl Water Sci 8(7):1–10

    Google Scholar 

  • Fukuto TR (1990) Mechanism of action of organophosphorus and carbamate insecticides. Environ Health Perspect 87:245–254. https://doi.org/10.1289/ehp.9087245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Futra D, Heng LY, Ahmad A, Surif S, Ling TL (2015) An optical biosensor from green fluorescent Escherichia coli for the evaluation of single and combined heavy metal toxicities. Sensors (switzerland) 15:12668–12681. https://doi.org/10.3390/s150612668

    Article  CAS  Google Scholar 

  • Gao F, Hu Y, Chen D, Li-Chan ECY, Grant E, Lu X (2015) Determination of Sudan I in paprika powder by molecularly imprinted polymers–thin layer chromatography–surface enhanced Raman spectroscopic biosensor. Talanta 143:344-352. https://doi.org/10.1016/j.talanta.2015.05.003

  • Ghica ME, Brett CMA (2008) Glucose oxidase inhibition in poly(neutral red) mediated enzyme biosensors for heavy metal determination. Microchim Acta 163:185–193. https://doi.org/10.1007/s00604-008-0018-1

    Article  CAS  Google Scholar 

  • Giedraitienė A, Vitkauskienė A, Naginienė R, Pavilonis A (2011) Antibiotic resistance mechanisms of clinically important bacteria. Medicina (B. Aires) 47:19

    Article  Google Scholar 

  • Gilden RC, Huffling K, Sattler B (2010) Pesticides and health risks. J Obstet Gynecol Neonatal Nurs 39:103–110

    Article  PubMed  Google Scholar 

  • Guascito MR, Malitesta C, Mazzotta E, Turco A (2008) Inhibitive determination of metal ions by an amperometric glucose oxidase biosensor. Study of the effect of hydrogen peroxide decomposition. Sensors Actuators B Chem 131:394–402. https://doi.org/10.1016/j.snb.2007.11.049

    Article  CAS  Google Scholar 

  • Hamzah HH, Yusof NA, Salleh AB, Bakar FA, Mara UT (2011) An Optical Test Strip for theDetection of Benzoic Acid in Food. Sensors 11(8):7302–7313. https://doi.org/10.3390/s110807302

  • Hashwan SSB, Khir MHBM, Al-Douri Y, Ahmed AY (2020) Recent progress in the development of biosensors for chemicals and pesticides detection. IEEE Access 8:82514–82527

    Article  Google Scholar 

  • Hildebrandt A, Bragos R, Lacorte S, Marty JL (2008) Performance of a portable biosensor for the analysis of organophosphorus and carbamate insecticides in water and food. Sensors Actuators B Chem 133:195–201

    Article  CAS  Google Scholar 

  • Huong DTV, Nga TTH, Ha DTT (2020) Residue pesticides (pyrethroid group) in vegetable and their health risk assessment via digestion on consumers in Ha Nam Province, Vietnam. In: IOP Conference Series: Earth and Environmental Science 505(1):12052. https://doi.org/10.1088/1755-1315/505/1/012052

  • Ilangovan R, Daniel D, Krastanov A, Zachariah C, Elizabeth R (2006) Enzyme based biosensor for heavy metal ions determination. Biotechnol Biotechnol Equip 20:184–189. https://doi.org/10.1080/13102818.2006.10817330

    Article  CAS  Google Scholar 

  • Jadán F, Aristoy M-C, Toldrá F (2017) Biosensor based on immobilized nitrate reductase for the quantification of nitrate ions in dry-cured Ham. Food Anal Methods 10:3481–3486

    Article  Google Scholar 

  • Jafari S, Dehghani M, Nasirizadeh N, Baghersad MH (2019) Synthesis and characterisation of a selective adsorbent based on the molecularly imprinted polymer for the removal of cloxacillin antibiotic residue from milk. Int J Dairy Technol 72:505–514

    Article  CAS  Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jalalvand AR, Mahmoudi M, Goicoechea HC (2018) Developing a novel paper-based enzymatic biosensor assisted by digital image processing and first-order multivariate calibration for rapid determination of nitrate in food samples. RSC Adv 8:23411–23420

    Article  CAS  Google Scholar 

  • Jamali MR, Assadi Y, Shemirani F, Hosseini MRM, Kozani RR, Masteri-Farahani M, Salavati-Niasari M (2006) Synthesis of salicylaldehyde-modified mesoporous silica and its application as a new sorbent for separation, preconcentration and determination of uranium by inductively coupled plasma atomic emission spectrometry. Anal Chim Acta 579:68–73

    Article  CAS  PubMed  Google Scholar 

  • Kalimuthu P, Fischer-schrader K, Schwarz G, Bernhardt PV (2015) A sensitive and stable amperometric nitrate biosensor employing Arabidopsis thaliana nitrate reductase. J of Biological Inorganic Chemistry 20:385–393. https://doi.org/10.1007/s00775-014-1171-0

  • Kao W-C, Belkin S, Cheng J-Y (2018) Microbial biosensing of ciprofloxacin residues in food by a portable lens-free CCD-based analyzer. Analytical and Bioanalytical Chemistry 410:1257–1263. https://doi.org/10.1007/s00216-017-0792-x

  • Kaur H, Kumar S, Verma N (2014) Enzyme-based colorimetric and potentiometric biosensor for detecting Pb (II) ions in milk. Brazilian Arch Biol Technol 57:613–619

    Article  CAS  Google Scholar 

  • Khusbhu S, Yashini M, Rawson A, Sunil CK (2021) Recent advances in terahertz time-domain spectroscopy and imaging techniques for automation in agriculture and food sector. Food Anal Methods. https://doi.org/10.1007/s12161-021-02132-y

    Article  Google Scholar 

  • Kitikul J, Satienperakul S, Preechaworapun A, Pookmanee P, Tangkuaram T (2017) A simple flow amperometric electrochemical biosensor based on chitosan scaffolds and gold nanowires modified on a glassy carbon electrode for detection of glutamate in food products. Electroanalysis 29:264–271

    Article  CAS  Google Scholar 

  • Krska R, Becalski A, Braekevelt E, Koerner T, Cao X-L, Dabeka R, Godefroy S, Lau B, Moisey J, Rawn DFK et al (2012) Challenges and trends in the determination of selected chemical contaminants and allergens in food. Anal Bioanal Chem 402:139–162

    Article  CAS  PubMed  Google Scholar 

  • Kurbanoglu S, Erkmen C, Uslu B (2020) Frontiers in electrochemical enzyme based biosensors for food and drug analysis. TrAC Trends Anal Chem 124:115809

    Article  CAS  Google Scholar 

  • Lan L, Yao Y, Ping J, Ying Y (2017) Recent progress in nanomaterial-based optical aptamer assay for the detection of food chemical contaminants. ACS Appl Mater Interfaces 9:23287–23301

    Article  CAS  PubMed  Google Scholar 

  • Lehotay SJ, Chen Y (2018) Hits and misses in research trends to monitor contaminants in foods. Analytical and Bioanalytical Chemistry 410:5331-5351. https://doi.org/10.1007/s00216-018-1195-3

  • Lewis RJ (1989) Food Additives Handbook. Van Nostrand Reinhold, New York

  • Li M, Zhou X, Ding W, Guo S, Wu N (2013) Fluorescent aptamer-functionalized graphene oxide biosensor for label-free detection of mercury(II). Biosens Bioelectron 41:889–893. https://doi.org/10.1016/j.bios.2012.09.060

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Liu C, Sarpong V, Gu Z (2019) Multisegment nanowire/nanoparticle hybrid arrays as electrochemical biosensors for simultaneous detection of antibiotics. Biosens Bioelectron 126:632–639

    Article  CAS  PubMed  Google Scholar 

  • Liang B, Zhang S, Lang Q, Song J, Han L, Liu A (2015) Amperometric L-glutamate biosensor based on bacterial cell-surface displayed glutamate dehydrogenase. Anal Chim Acta 884:83–89

    Article  CAS  PubMed  Google Scholar 

  • Li S, Tan Y, Wang P, Kan J (2010) Inhibition of benzoic acid on the polyaniline–polyphenol oxidase biosensor. Sensors and Actuators B: Chemical, 144(1):18-22. https://doi.org/10.1016/j.snb.2009.08.038

  • Li Y, Wang A, Bai Y, Wang S (2017) Acriflavine-immobilized eggshell membrane as a new solid-state biosensor for Sudan I–IV detection based on fluorescence resonance energy transfer. Food Chemistry 237:966-973. https://doi.org/10.1016/j.foodchem.2017.06.050

  • Liao VH-C, Chien M-T, Tseng Y-Y, Ou K-L (2006) Assessment of heavy metal bioavailability in contaminated sediments and soils using green fluorescent protein-based bacterial biosensors. Environ Pollut 142:17–23

    Article  CAS  PubMed  Google Scholar 

  • Long F, Zhu A, Shi H, Wang H, Liu J (2013) Rapid on-site/in-situ detection of heavy metal ions in environmental water using a structure-switching DNA optical biosensor. Sci Rep 3:1–7. https://doi.org/10.1038/srep02308

    Article  Google Scholar 

  • López M S-P, López-Ruiz B (2011) Inhibition Biosensor Based on Calcium Phosphate Materials for Detection of Benzoic Acid in Aqueous and Organic Media. Electroanalysis 23(1):264-271.https://doi.org/10.1002/elan.201000488

  • Lorber KE (1986) Monitoring of heavy metals by energy dispersive X-ray fluorescence spectrometry. In: Incineration of Municipal Waste. Edited by Robert B.Dean. Elsevier

  • Lu L, Zhu Z, Hu X (2019) Hybrid nanocomposites modified on sensors and biosensors for the analysis of food functionality and safety. Trends Food Sci Technol 90:100–110

    Article  CAS  Google Scholar 

  • Maity D, Kumar RTR (2019) Highly sensitive amperometric detection of glutamate by glutamic oxidase immobilized Pt nanoparticle decorated multiwalled carbon nanotubes (MWCNTs)/polypyrrole composite. Biosens Bioelectron 130:307–314

    Article  CAS  PubMed  Google Scholar 

  • Mansour SA, Belal MH, Abou-Arab AAK, Gad MF (2009) Monitoring of pesticides and heavy metals in cucumber fruits produced from different farming systems. Chemosphere 75:601–609

    Article  CAS  PubMed  Google Scholar 

  • Massah J, Vakilian KA (2019) An intelligent portable biosensor for fast and accurate nitrate determination using cyclic voltammetry. Biosyst Eng 177:49–58

    Article  Google Scholar 

  • McGrath TF, Elliott CT, Fodey TL (2012) Biosensors for the analysis of microbiological and chemical contaminants in food. Anal Bioanal Chem 403:75–92

    Article  CAS  PubMed  Google Scholar 

  • Mentana A, Nardiello D, Palermo C, Centonze D (2020) Accurate glutamate monitoring in foodstuffs by a sensitive and interference-free glutamate oxidase based disposable amperometric biosensor. Anal Chim Acta 1115:16–22

    Article  CAS  PubMed  Google Scholar 

  • Meyer VK, Chatelle CV, Weber W, Niessner R, Seidel M (2020) Flow-based regenerable chemiluminescence receptor assay for the detection of tetracyclines. Analytical abd Bioanalytica; Chemistry 472:3467-3476

  • Minami T, Sasaki Y, Minamiki T, Wakida S, Kurita R, Niwa O, Tokito S (2016) Selective nitrate detection by an enzymatic sensor based on an extended-gate type organic field-effect transistor. Biosens Bioelectron 81:87–91

    Article  CAS  PubMed  Google Scholar 

  • Mishra RK, Dominguez RB, Bhand S, Muñoz R, Marty J-L (2012) A novel automated flow-based biosensor for the determination of organophosphate pesticides in milk. Biosens Bioelectron 32:56–61

    Article  CAS  PubMed  Google Scholar 

  • Modupalli N, Naik M, Sunil CK, Natarajan V (2021) Emerging non-destructive methods for quality and safety monitoring of spices. Trends Food Sci Technol 108:133–147

    Article  CAS  Google Scholar 

  • Mohammad-Razdari A, Ghasemi-Varnamkhasti M, Rostami S, Izadi Z, Ensafi AA, Siadat M (2020) Development of an electrochemical biosensor for impedimetric detection of tetracycline in milk. J Food Sci Technol 57:4697–4706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molinero-Abad B, Alonso-Lomillo MA, Domínguez-Renedo O, Arcos-Martínez MJ (2014) Sulfite oxidase biosensors based on tetrathiafulvalene modified screen-printed carbon electrodes for sulfite determination in wine. Anal Chim Acta 812:41–44

    Article  CAS  PubMed  Google Scholar 

  • Mulchandani A, Chen W, Mulchandani P, Wang J, Rogers KR (2001) Biosensors for direct determination of organophosphate pesticides. Biosens Bioelectron 16:225–230

    Article  CAS  PubMed  Google Scholar 

  • Mulchandani P, Mulchandani A, Kaneva I, Chen W (1999) Biosensor for direct determination of organophosphate nerve agents. 1. Potentiometric enzyme electrode biosens. Bioelectron 14:77–85

    Article  CAS  Google Scholar 

  • Nevetha R, Kumar S, Yashini M, Rajeshwari S, Mamathi CA, Nirmal Thirunavookarasu S, Sunil CK (2021) Recent advances in surface plasmon resonance (SPR) biosensors for food analysis: a review. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2021.1958745

    Article  Google Scholar 

  • Onaolapo AY, Onaolapo OJ (2018) Food additives, food and the concept of “food addiction”: Is stimulation of the brain reward circuit by food sufficient to trigger addiction? Pathophysiology 25:263–276. https://doi.org/10.1016/j.pathophys.2018.04.002

    Article  CAS  PubMed  Google Scholar 

  • Oujji NB, Bakas I, Istamboulié G, Ait-Ichou I, Ait-Addi E, Rouillon R, Noguer T (2013) Sol–gel immobilization of acetylcholinesterase for the determination of organophosphate pesticides in olive oil with biosensors. Food Control 30:657–661

    Article  CAS  Google Scholar 

  • Ouyang Q, Liu Y, Chen Q, Guo Z, Zhao J, Li H, Hu W (2017) Rapid and speci fi c sensing of tetracycline in food using a novel upconversion aptasensor. Food Control 81:156–163. https://doi.org/10.1016/j.foodcont.2017.06.004

    Article  CAS  Google Scholar 

  • Peter JV, Sudarsan TI, Moran JL (2014) Clinical features of organophosphate poisoning: a review of different classification systems and approaches. Indian J Crit Care Med 18:735

    Article  PubMed  PubMed Central  Google Scholar 

  • Poli A, Salerno A, Laezza G, di Donato P, Dumontet S, Nicolaus B (2009) Heavy metal resistance of some thermophiles: potential use of $α$-amylase from Anoxybacillus amylolyticus as a microbial enzymatic bioassay. Res Microbiol 160:99–106

    Article  CAS  PubMed  Google Scholar 

  • Portaccio M, Di Tuoro D, Arduini F, Moscone D, Cammarota M, Mita DG, Lepore M (2013) Laccase biosensor based on screen-printed electrode modified with thionine–carbon black nanocomposite, for Bisphenol A detection. Electrochim Acta 109:340–347

    Article  CAS  Google Scholar 

  • Pundir CS, Chauhan N (2012) Acetylcholinesterase inhibition-based biosensors for pesticide determination: a review. Anal Biochem 429:19–31

    Article  CAS  PubMed  Google Scholar 

  • Qishlaqi A, Moore F, Forghani G (2008) Impact of untreated wastewater irrigation on soils and crops in Shiraz suburban area, SW Iran. Environ Monit Assess 141:257–273

    Article  CAS  PubMed  Google Scholar 

  • Rather IA, Koh WY, Paek WK, Lim J (2017) The sources of chemical contaminants in food and their health implications. Front Pharmacol 8. https://doi.org/10.3389/fphar.2017.00830

  • Rattu G, Krishna PM (2017) Label-free electrochemical biosensors for food and drug application. Int J Bio-Inorg Hybr Nanomater 6:185–203

    Google Scholar 

  • Rawal R, Chawla S, Pundir CS (2012) An electrochemical sulfite biosensor based on gold coated magnetic nanoparticles modified gold electrode. Biosens Bioelectron 31:144–150

    Article  CAS  PubMed  Google Scholar 

  • Rezaei B, Boroujeni MK, Ensafi AA (2016) Development of Sudan II sensor based on modified treated pencil graphite electrode with DNA, o-phenylenedieamine, and gold nanaparticle bioimprinted polymer. Sens. Actuators, B 222:849–856

  • Rioja RG, del Rio SM, Alonso SS, Cayrols AJ, Urquidi Gonzalez I, Egiguren AA (2018) System and method for measuring sulphite in food samples using an amperometric biosensor and the use of said biosensor. Patent WO2017005947A1

  • Roca-Saavedra P, Mendez-Vilabrille V, Miranda JM, Nebot C, Cardelle-Cobas A, Franco CM, Cepeda A (2018) Food additives, contaminants and other minor components: effects on human gut microbiota—a review. J Physiol Biochem 74:69–83. https://doi.org/10.1007/s13105-017-0564-2

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Mozaz S, Alda MJLD, Marco MP, Barceló D (2005) Biosensors for environmental monitoring: a global perspective. Talanta 65:291–297. https://doi.org/10.1016/j.talanta.2004.07.006

    Article  CAS  PubMed  Google Scholar 

  • Roldán-Tapia L, Parrón T, Sánchez-Santed F (2005) Neuropsychological effects of long-term exposure to organophosphate pesticides. Neurotoxicol Teratol 27:259–266

    Article  PubMed  CAS  Google Scholar 

  • Rotariu L, Lagarde F, Jaffrezic-Renault N, Bala C (2016) Electrochemical biosensors for fast detection of food contaminants–trends and perspective. TrAC Trends Anal Chem 79:80–87

    Article  CAS  Google Scholar 

  • Rouhbakhsh Z, Verdian A, Rajabzadeh G (2020) Talanta design of a liquid crystal-based aptasensing platform for ultrasensitive detection of tetracycline. Talanta 206:120246. https://doi.org/10.1016/j.talanta.2019.120246

    Article  CAS  PubMed  Google Scholar 

  • Sachi S, Ferdous J, Sikder MH, Hussani SMAK (2019) Antibiotic residues in milk: past, present, and future. J Adv Vet Anim Res 6:315

    Article  PubMed  PubMed Central  Google Scholar 

  • Saengdee P, Promptmas C, Zeng T, Leimkühler S, Wollenberger U (2017) Third-generation sulfite biosensor based on sulfite oxidase immobilized on aminopropyltriethoxysilane modified indium tin oxide. Electroanalysis 29:110–115

    Article  CAS  Google Scholar 

  • Saidur MR, Aziz ARA, Basirun WJ (2017) Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection: a review. Biosens Bioelectron 90:125–139

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto S, Putalun W, Vimolmangkang S, Phoolcharoen W (2018) Enzyme - linked immunosorbent assay for the quantitative / qualitative analysis of plant secondary metabolites. J Nat Med 72(1):32–42

    Article  CAS  PubMed  Google Scholar 

  • Sharma M (2020) Fabrication of enzyme nanoparticles-based nanosensor for detection of nitrate content in drinking water. Asian J Pharm Free full text Artic from Asian J Pharm 14(1):133-138

  • Sharma A, Istamboulie G, Hayat A, Catanante G, Bhand S, Louis J (2017) Disposable and portable aptamer functionalized impedimetric sensor for detection of kanamycin residue in milk sample. Sens. Actuators, B, 245, 507–515. https://doi.org/10.1016/j.snb.2017.02.002

  • Sharma R, Ragavan KV, Thakur MS, Raghavarao K (2015) Recent advances in nanoparticle based aptasensors for food contaminants. Biosens Bioelectron 74:612–627

    Article  CAS  PubMed  Google Scholar 

  • Shimada A, Cairns BE, Vad N, Ulriksen K, Pedersen AML, Svensson P, Baad-Hansen L (2013) Headache and mechanical sensitization of human pericranial muscles after repeated intake of monosodium glutamate (MSG). J Headache Pain 14:1–9

    Article  CAS  Google Scholar 

  • Şimşek Ş, Aynaci E, Arslan F (2016) An amperometric biosensor for L-glutamate determination prepared from L-glutamate oxidase immobilized in polypyrrole-polyvinylsulphonate film. Artif Cells Nanomed Biotechnol 44:356–361. https://doi.org/10.3109/21691401.2014.951723

    Article  CAS  PubMed  Google Scholar 

  • Sohail M, Adeloju SB (2009) Fabrication of redox-mediator supported potentiometric nitrate biosensor with nitrate reductase. Electroanal. An. Int J Devoted to Fundam Pract Asp Electroanal 21:1411–1418

    CAS  Google Scholar 

  • Soldatkin OO, Kucherenko IS, Pyeshkova VM, Kukla AL, Jaffrezic-Renault N, El’skaya AV, Dzyadevych SV, Soldatkin AP (2012) Novel conductometric biosensor based on three-enzyme system for selective determination of heavy metal ions. Bioelectrochemistry 83:25–30. https://doi.org/10.1016/j.bioelechem.2011.08.001

    Article  CAS  PubMed  Google Scholar 

  • Sroysee W, Ponlakhet K, Chairam S, Jarujamrus P, Amatatongchai M (2016) A sensitive and selective on-line amperometric sulfite biosensor using sulfite oxidase immobilized on a magnetite-gold-folate nanocomposite modified carbon-paste electrode. Talanta 156–157:154–162. https://doi.org/10.1016/j.talanta.2016.04.066

    Article  CAS  PubMed  Google Scholar 

  • Stammati A, Zanetti C, Pizzoferrato L, Quattrucci E, Tranquilli GB (1992) In vitro model for the evaluation of toxicity and antinutritional effects of sulphites. Food Addit Contam 9:551–560

    Article  CAS  PubMed  Google Scholar 

  • Suwansa-ard S, Kanatharana P, Asawatreratanakul P, Limsakul C, Wongkittisuksa B, Thavarungkul P (2005) Semi disposable reactor biosensors for detecting carbamate pesticides in water. Biosens Bioelectron 21:445–454

    Article  CAS  PubMed  Google Scholar 

  • Taghdisi SM, Danesh NM, Ramezani M, Abnous K (2016) A novel M-shape electrochemical aptasensor for ultrasensitive detection of tetracyclines. Biosens Bioelectron 85:509–514

    Article  CAS  PubMed  Google Scholar 

  • Talan A, Mishra A, Eremin SA, Narang J, Kumar A, Gandhi S (2018) Ultrasensitive electrochemical immuno-sensing platform based on gold nanoparticles triggering chlorpyrifos detection in fruits and vegetables. Biosensors and Bioelectronics, 105, 14-21. https://doi.org/10.1016/j.bios.2018.01.013

  • Thakur MS, Ragavan KV (2013) Biosensors in food processing. J Food Sci Technol 50:625–641. https://doi.org/10.1007/s13197-012-0783-z

    Article  CAS  PubMed  Google Scholar 

  • Trasande L, Shaffer RM, Sathyanarayana S (2018) Food additives and child health. Technical report fromthe American Academy of Pediatrics. Pediatrics 142(2):e20181410. https://doi.org/10.1542/peds.2018-1410

  • Trojanowicz M, Hitchman ML (1996) Determination of pesticides using electrochemical biosensors. TrAC Trends Anal Chem 15:38–45

    Article  CAS  Google Scholar 

  • Tsai H-C, Doong R-A, Chiang H-C, Chen K-T (2003) Sol–gel derived urease-based optical biosensor for the rapid determination of heavy metals. Anal Chim Acta 481:75–84

    Article  CAS  Google Scholar 

  • Turnipseed SB, Storey JM, Wu I, Gieseker CM, Hasbrouck NR, Crosby TC, Andersen WC, Lanier S, Casey CR, Burger R, Madson MR (2018) Application and evaluation of a high-resolution mass spectrometry screening method for veterinary drug residues in incurred fish and imported aquaculture samples. Anal Bioanal Chem. 410(22):5529-5544. https://doi.org/10.1007/s00216-018-0917-x

  • Umar MF, Nasar A (2018) Reduced graphene oxide/polypyrrole/nitrate reductase deposited glassy carbon electrode (GCE/RGO/PPy/NR): biosensor for the detection of nitrate in wastewater. Appl Water Sci 8:1–10

    Article  CAS  Google Scholar 

  • Vakilian KA, Massah J (2018) A fuzzy-based decision making software for enzymatic electrochemical nitrate biosensors. Chemom Intell Lab Syst. https://doi.org/10.1016/j.chemolab.2018.04.016

    Article  Google Scholar 

  • Vally H, Misso NLA, Madan V (2009) Clinical effects of sulphite additives. Clin Exp Allergy 39:1643–1651

    Article  CAS  PubMed  Google Scholar 

  • Van Dyk JS, Pletschke B (2011) Review on the use of enzymes for the detection of organochlorine, organophosphate and carbamate pesticides in the environment. Chemosphere 82:291–307

    Article  PubMed  CAS  Google Scholar 

  • Verma ML, Rani V (2020) Biosensors for toxic metals, polychlorinated biphenyls, biological oxygen demand, endocrine disruptors, hormones, dioxin, phenolic and organophosphorus compounds: a review. Environ Chem Lett 19:1657-1666

  • Verma N, Kaur H, Kumar S (2011) Whole cell based electrochemical biosensor for monitoring lead ions in milk. Biotechnology 10:259–266. https://doi.org/10.3923/biotech.2011.259.266

    Article  CAS  Google Scholar 

  • Verma N, Singh M (2006) A Bacillus sphaericus based biosensor for monitoring nickel ions in industrial effluents and foods. 2006: 1–4. https://doi.org/10.1155/JAMMC/2006/83427

  • Verma N, Singh M (2005) Biosensors for heavy metals. Biometals 18:121–129

    Article  CAS  PubMed  Google Scholar 

  • Waliszewski SM, Villalobos-Pietrini R, Gomez-Arroyo S, Infanzon RM (2003) Persistent organochlorine pesticides in Mexican butter. Food Addit Contam 20:361–367

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Duan J, Cai Y, Liu D, Li X, Dong Y, Hu F (2020) A modified nanocomposite biosensor for quantitative l-glutamate detection in beef. Meat Sci 168:108185

    Article  CAS  PubMed  Google Scholar 

  • Weltin A, Kieninger J, Urban GA (2017) Highly sensitive electrochemical glutamate microsensors for food analysis. In: Multidisciplinary Digital Publishing Institute Proceedings, 1(4):521

  • Wilson GR, Edwards M et al (2019) Professional kangaroo population control leads to better animal welfare, conservation outcomes and avoids waste. Aust Zool 40:181

    Article  Google Scholar 

  • Wu L, Yin W, Tang K, Li D, Shao K, Zuo Y, Ma J, Han H (2016) Enzymatic biosensor of horseradish peroxidase immobilized on Au-Pt nanotube/Au-graphene for the simultaneous determination of antioxidants. Analytica Chimica Acta 933, 89-96.https://doi.org/10.1016/j.aca.2016.06.020

  • Ye Y, Guo H, Sun X (2019) Recent progress on cell-based biosensors for analysis of food safety and quality control. Biosens Bioelectron 126:389–404. https://doi.org/10.1016/j.bios.2018.10.039

    Article  CAS  PubMed  Google Scholar 

  • Zeng T, Leimkühler S, Koetz J, Wollenberger U (2015) Effective electrochemistry of human sulfite oxidase immobilized on quantum-dots-modified indium tin oxide electrode. ACS Appl Mater Interfaces 7:21487–21494

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Zhu Z, Du D, Lin Y (2016) Nanomaterial-based electrochemical biosensors for food safety. J Electroanal Chem 781:147–154

    Article  CAS  Google Scholar 

  • Zhang N, Wei X, Fan Y, Zhou X, Liu Y (2020) Recent advances in development of biosensors for taste-related analyses. TrAC Trends Anal Chem 129

  • Zhang X, Wu D, Zhou X, Yu Y, Liu J, Hu N, Wang H, Li G, Wu Y (2019) Recent progress in the construction of nanozyme-based biosensors and their applications to food safety assay. TrAC Trends Anal. Chem 121:115668

    Article  CAS  Google Scholar 

  • Zhang Y, Zuo P, Ye B-C (2015) A low-cost and simple paper-based microfluidic device for simultaneous multiplex determination of different types of chemical contaminants in food. Biosens Bioelectron 68:14–19

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the manuscript, critically reviewed all previous research, drafted the manuscript, and prepared the tables and figures.

Corresponding author

Correspondence to C. K. Sunil.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not Applicable

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhavadharini, B., Kavimughil, M., Malini, B. et al. Recent Advances in Biosensors for Detection of Chemical Contaminants in Food — a Review. Food Anal. Methods 15, 1545–1564 (2022). https://doi.org/10.1007/s12161-021-02213-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-021-02213-y

Keywords

Navigation