Skip to main content
Log in

Babassu mesocarp (Orbignya phalerata Mart) nanoparticle-based biosensors for indirect sulfite detection in industrial juices

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The present work proposes a new electrochemical sulfite biosensor based on babassu mesocarp nanoparticles (BMNPs) immobilized on the surface of a pyrolytic graphite electrode (PGE). The synthesized nanoparticles had a size of 121.5 nm and a zeta potential of − 28.1 mV and were used as a support for the immobilization of chitosan (CHIT) and polyphenol oxidase (PPO) obtained from sweet potatoes (Ipomea batatas (L.)). The electrochemical activity of the PGE/BMNPs/CHIT/GA/PPO biosensor was measured using cyclic voltammetry (CV) and square wave voltammetry (SWV), and the biosensor was shown to have a sensitivity of 2.18 μA/μmol L−1, a detection limit of 0.151 μmol L−1, and quantitation limit of 0.452 μmol L−1 for sulfite. The principle of analysis for the developed biosensor is based on the inhibitory effect of sulfite on the activity of the PPO enzyme. This biosensor was successfully employed for the analysis of industrial juice, without the need to pre-treat the sample.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Emerton V, Choi, E (2008) Food additives and why they are used. In Essential guide to food additives. 3rd. Surrey: Leatherhead Publishing

  2. Saltmarsh M (2013) Essential guide to food additives, 4th edn. RSC Publishing, Cambridge

    Book  Google Scholar 

  3. Scampicchio M, Lawrence NS, Arecchi A, Mannino S (2008) Determination of sulfite in wine by linear sweep voltammetry. Electroanalysis 20:444–447

    Article  CAS  Google Scholar 

  4. Bahmani B, Moztarzadeh F, Rabiu M, Tahriri M (2010) Development of electrochemical sulfite biosensor by immobilization of sulfite oxidase on conducting polyaniline film. Synth Met 160:2653–2657

    Article  CAS  Google Scholar 

  5. Filik H, Çetintaş G (2012) Determination of sulfite in water and dried fruit samples by dispersive liquid-liquid microextraction combined with UV-Vis fiber optic linear array spectrophotometry. Food Anal Methods 5:1362–1367

    Article  Google Scholar 

  6. Mattison CP, Desormeaux WA, Wasserman RL, Yoshioka-Tarver M, Condon B, Grimm CC (2014) Decreased immunoglobulin E (IgE) binding to cashew allergens following sodium sulfite treatment and heating. J Agr Food Chem 62:6746–6755

    Article  CAS  Google Scholar 

  7. Suh H, Cho Y, Chung M, Kim B (2007) Preliminary data on sulfite intake from the Korean diet. J Food Compos Anal 20:212–219

    Article  CAS  Google Scholar 

  8. Iammarino M, Di Taranto M, Muscarella M (2012) Investigations on the presence of sulfites in fresh meat preparations: estimation of an allowable maximum limit. Meat Sci 90(2):304–308

    Article  CAS  PubMed  Google Scholar 

  9. Vally H, Misso NLA, Madan V (2009) Clinical effects of sulfite additive. Clin Exp Allergy 39(11):1643–1651

    Article  CAS  PubMed  Google Scholar 

  10. Iwasawa S, Kikuchi Y, Nishiwaki Y, Nakano M, Michikawa T, Tsuboi T, Tanaka S, Uemura T, Ishigami A, Nakashima H (2009) Effects of SO2 on respiratory system of adult Miyakejima resident 2 years after returning to the island. J Occup Health 51(1):38–47

    Article  CAS  PubMed  Google Scholar 

  11. Machado RMD, Toledo MCF (2006) Sulfitos em Alimentos. Braz J Food Technol 9:265–275

    CAS  Google Scholar 

  12. Stohs SJ, Miller MJS (2014) A case study involving allergic reactions to sulfur-containing compounds including, sulfite, taurine, acesulfame potassium and sulfonamides. Food Chem Toxicol 63:240–243

    Article  CAS  PubMed  Google Scholar 

  13. Dinckaya E, Sezginiturk MK, Akyilmaz E, Ertas FN (2007) Sulfite determination using sulfite oxidase biosensor based glassy carbon electrode coated with thin mercury film. Food Chem 101:1540–1544

    Article  CAS  Google Scholar 

  14. Lowinsohn D, Bertotti M (2001) Determination of sulfite in wine by coulometric titration. Food Addit Contam 18(9):773–777

    Article  CAS  PubMed  Google Scholar 

  15. Koch M, Köppen R, Siegel D, Witt A, Nehls I (2010) Determination of total sulfite in wine by ion chromatography after in-sample oxidation. J Agr Food Chem 58:9463–9467

    Article  CAS  Google Scholar 

  16. Daunoravicius Z, Padarauskas A (2002) Capillary electrophoretic determination of thiosulfate, sulfide and sulfite using in-capillary derivatization with iodine. Electrophoresis 23(15):2439–2444

    Article  CAS  PubMed  Google Scholar 

  17. Carvalho LM, Schwedt G (2005) Sulfur speciation by capillary zone electrophoresis: determination of dithionite and its decomposition products sulfite, sulfate and thiosulfate in commercial bleaching agentes. J Chromatogr A 1099(1-2):185–190

    Article  PubMed  CAS  Google Scholar 

  18. Satienperakul S, Phongdong P, Liawruangrath S (2010) Pervaporation flow injection analysis for the determination of sulfite in food samples utilizing potassium permanganate-rhodamine B chemiluminescence detection. Food Chem 212:893–898

    Article  CAS  Google Scholar 

  19. Amatatongchai M, Sroysee W, Chairam S, Nacapricha D (2015) Simple flow injection for determination of sulfite by amperometric detection using glassy carbon electrode modified with carbon nanotubes–PDDA–gold nanoparticles. Talanta 133:134–141

    Article  CAS  PubMed  Google Scholar 

  20. Yang XF, Guo XQ, Zhao YB (2002) Novel spectrofluorimetric method for the determination of sulfite with rhodamine B hydrazide in a micellar medium. Anal Chim Acta 456:121–128

    Article  CAS  Google Scholar 

  21. Wang C, Feng S, Wu L, Yan S, Zhong C, Guo P, Huang R, Weng X, Zhou X (2014) A new fluorescent turn-on probe for highly sensitive and selective detection of sulfite and bisulfite. Sensors Actuat B Chem 190:792–799

    Article  CAS  Google Scholar 

  22. Chen PY, Chi YM, Yang HH, Shih Y (2012) Oil spills detection and monitoring using Airborn thermal infrared remote sensing in Dalian Xingang oil pipeline explosion. J Electroanal Chem 675:1–4

    Article  CAS  Google Scholar 

  23. Rawal R, Chawla S, Pundir CS (2012) An electrochemical sulfite biosensor based on gold coated magnetic nanoparticles modified gold electrode. Biosens Bioelectron 31(1):144–150

    Article  CAS  PubMed  Google Scholar 

  24. Molinero-Abad B, Alonso-Lomillo MA, Domínguez-Renedo O, Arcos-Martínez MJ (2014) Sulfite oxidase biosensors based on tetrathiafulvalene modified screen-printed carbon electrodes for sulfite determination in wine. Anal Chim Acta 812:41–44

    Article  CAS  PubMed  Google Scholar 

  25. López-Gallego F, Betancor L, Mateo C, Hidalgo A, Alonso-Morales N, Dellamora-Ortiz G, Guisán JM, Fernández-Lafuente R (2005) Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports. J Biotechnol 119(1):70–75

    Article  PubMed  CAS  Google Scholar 

  26. Kim J, Grate JW, Wang P (2006) Nanostructures for enzyme stabilization. Chem Eng Sci 61:1017–1026

    Article  CAS  Google Scholar 

  27. Fiorentino D, Gallone A, Fiocco D, Palazzo G, Mallardi A (2010) Mushroom tyrosinase in polyelectrolyte multilayers as an optical biosensor foro-diphenols. Biosens Bioelectron 25(9):2033–2037

    Article  CAS  PubMed  Google Scholar 

  28. Falguera V, Sánchez-Riaño A, Quintero-Cerón J, Rivera-Barrero C, Méndez-Arteaga J, Ibarz A (2012) Characterization of polyphenol oxidase activity in juices from 12 underutilized tropical fruits with high agroindustrial potential. Food Bioprocess Technol 5:2921–2927

    Article  CAS  Google Scholar 

  29. Janegitz BC, Medeiros RA, Rocha-Filho RC, Fatibello-Filho O (2012) Direct electrochemistry of tyrosinase and biosensing for phenol based on gold nanoparticles electrodeposited on a boron-doped diamond electrode. Diam Relat Mater 25:128–133

    Article  CAS  Google Scholar 

  30. Katz E, Willner I (2004) Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed 19:6042–6108

    Article  CAS  Google Scholar 

  31. Guo S, Wang E (2007) Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta 598(2):181–192

    Article  CAS  PubMed  Google Scholar 

  32. Zhang X, Guo Q, Cui D (2009) Recent advances in nanotechnology applied to biosensors. Sensors 9(2):1033–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Teixeira PRS, Teixeira ASNM, Farias EAO, Silva DA, Nunes LCC, Leite CMS, da Silva Filho EC, Eiras C (2018) Chemically modified babassu coconut (Orbignya sp.) biopolymer: characterization and development of a thin film for its application in electrochemical sensors. J Polym Res 25:127–138

    Article  CAS  Google Scholar 

  34. Aulton ME (2005) Delineamento de formas farmacêuticas. Artmed, Porto Alegre

    Google Scholar 

  35. Almeida RR, Lacerdab LG, Murakamib FSC, Bannachd G, Demiatea IM, Soccol CR, Carvalho Filho MAS, Schnitzler E (2011) Thermal analysis as a screening technique for the characterization of babassu flour and its solid fractions after acid and enzymatic hydrolysis. Thermochim Acta 519:50–54

    Article  CAS  Google Scholar 

  36. Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36:887–913

    Article  CAS  Google Scholar 

  37. Lupetti KO, Ramos LA, Fatibello-Filho O (2003) Enzimatic determination of dopamine in pharmaceutical formulations using a flow injection analysis system with avocado (Persea americana) crude extract. Quim Nova 26:197–201

    Article  CAS  Google Scholar 

  38. Harper HP (1973) Manual de química fisiológica, 3rd edn. São Paulo, Atheneu Editora

    Google Scholar 

  39. Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  40. Monteiro Júnior AOC, Airoldi C (1999) Some studies of crosslinking chitosan-glutaraldehyde interaction in a homogenous system. Int J Biol Macromol 26:119–128

    Article  Google Scholar 

  41. Quintanar-Guerrero D, Allemann E, Fess IH, Doelker E (1998) Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev Ind Pharm 24(12):1113–1128

    Article  CAS  PubMed  Google Scholar 

  42. Liu CH, Wu CT (2010) Optimization of nanostructured lipid carriers for lutein delivery. Colloids Surf A Physicochem Eng Asp 353:149–156

    Article  CAS  Google Scholar 

  43. Patel VR, Agrawal YK (2011) Nanosuspension: an approach to enhance solubility of drugs. J Adv Pharm Technol Res 2(2):81–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou G, Yang JC (2004) In situ UHV-TEM investigation of the kinetics of initial stages of oxidation on the roughened Cu (110) surface. Surf Sci 559:100–110

    Article  CAS  Google Scholar 

  45. Bhattacharjee S (2016) DLS and zeta potential – what they are and what they are not? J Control Release 235:337–351

    Article  CAS  PubMed  Google Scholar 

  46. Sartori ER, Vicentini FC, Fatibello-Filho O (2011) Indirect determination of sulfite using a polyphenol oxidase biosensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and gold nanoparticles within a poly(allylamine hydrochloride) film. Talanta 15:235–242

    Article  CAS  Google Scholar 

  47. Vieira AP, Santana SAA, Bezerra CWB, Silva HAS, Chaves JAP, Melo JCP, da Silva Filho EC, Airoldi C (2011) Removal of textile dyes from aqueous solution by babassu coconut epicarp (Orbignya speciosa). Chem Eng J 173:334–340

    Article  CAS  Google Scholar 

  48. Fráguas RM, Simão AA, Faria PV, Queiroz ER, Oliveira Junior EN, Abreu CMP (2015) Preparation and characterization chitosan edible films. Polímeros 25:48–56

    Article  CAS  Google Scholar 

  49. Wang T, Turhan M, Gunasekaran S (2004) Selected properties of pH-sensitive, biodegradable chitosan–poly(vinyl alcohol) hydrogel. Polym Int 53:911–918

    Article  CAS  Google Scholar 

  50. Narang J, Chauchan N, Singh A, Pundir CS (2011) A nylon membrane based amperometric biosensor for polyphenol determination. J Mol Catal B Enzymatic 72:276–281

    Article  CAS  Google Scholar 

  51. Souza KV, Zamora PGP, Zawadzki SF (2010) Chitosan/Fe spheres on the blue QR-19 dye degradation by photo Fenton processes using artificial or solar light. Polímeros 20:210–214

    Article  Google Scholar 

  52. Tan YY, Kan JQ, Li SQ (2011) Amperometric biosensor for catechol using electrochemical template process. Sensor Act B Chem 152:285–291

    Article  CAS  Google Scholar 

  53. Mayer AM (2006) Polyphenol oxidases in plants and fungi: going places? A review. Phytochemistry 67(21):2318–2331

    Article  CAS  PubMed  Google Scholar 

  54. Kertesz D, Zito R (1965) Mushroom polyphenol oxidase purification and general properties. Biochim Biophys Acta 96:447–462

    Article  CAS  Google Scholar 

  55. Xie X, Gan T, Sun D, Wu K (2008) Application of multi-walled carbon nanotubes/nafion composite film in electrochemical determination of Pb2+. Fuller Nanotub Carbon Nanostruct 16:103–113

    Article  CAS  Google Scholar 

  56. Bard AJ, Faulkner LR (2001) Electrochemical methods fundamentals and applications. Wiley, New York

    Google Scholar 

  57. Namatollahi D, Tammari E, Karbasi H (2007) Electrooxidation of catechols in the presence of sulfite: presentation of a facilite and green method for aromatic sulfonation. Int J Electrochem Sci 2:986–995

    Google Scholar 

  58. Goto Y, Matsui T, Ozaki S-I, Watanabe Y, Fukuzumi S (1999) Mechanisms of sulfoxidation catalyzed by high-valent intermediates of heme enzymes: electron-transfer vs oxygen-transfer mechanism. J Am Chem Soc 121:9497–9502

    Article  CAS  Google Scholar 

  59. Anvisa (2003) Resolução RDC no. 899, de 29 de maio de 2003. Ministério da Saúde - MS. Agência Nacional de Vigilância Sanitária – Anvisa

  60. Rawal R, Pundir CS (2013) Development of electrochemical sulfite biosensor based on SOx/PBNPs/PPY modified Au electrode. Biochem Eng J 71:30–37

    Article  CAS  Google Scholar 

  61. Ameer Q, Adeloju SB (2008) Galvanostatic entrapment of sulfite oxidase into ultrathin polypyrrole films for improved amperometric biosensing of sulfite. Electroanalysis 20:2549–2556

    Article  CAS  Google Scholar 

  62. Kalimuthu P, Tkac J, Kappler U, Davis JJ, Bernhardt PV (2010) Highly sensitive and stable electrochemical sulfite biosensor incorporating a bacterial sulfite dehydrogenase. Anal Chem 82(17):7374–7379

    Article  CAS  PubMed  Google Scholar 

  63. Abass AK, Hart JP, Cowell D (2000) Development of an amperometric sulfite biosensor based on sulfite oxidase with cytochrome c, as electron acceptor, and a screen-printed transducer. SensorActuat B 62:148–153

    CAS  Google Scholar 

  64. Beitollahi H, Tajik S, Biparva P (2014) Electrochemical determination of sulfite and phenol using a carbon paste electrode modified with ionic liquids and graphene nanosheets: application to determination of sulfite and phenol in real samples. Measurement 56:170–177

    Article  Google Scholar 

  65. Rawal R, Chawla S, Dahiya T, Pundir CS (2011) Development of an amperometric sulfite biosensor based on a gold nanoparticles/chitosan/multiwalled carbon nanotubes/polyaniline-modified gold electrode. Anal Bioanal Chem 401(8):2599–2608

    Article  CAS  PubMed  Google Scholar 

  66. Fatibelo Filho O, Vieira IC (1997) Flow injection spectrophotometric determination of sulfite using a crude extract of sweet potato root (Ipomoea batatas (L.) Lam.) as a source of polyphenol oxidase. Anal Chim Acta 354:51–57

    Article  Google Scholar 

  67. Brasil. Agência Nacional de Vigilância Sanitária (1997) Portaria no. 540 – SVS/MS de 27 de outubro de 1997. Aprova o Regulamento Técnico: Aditivos Alimentares - definições, classificação e emprego [acesso em 3 maio 2019]. Disponível em: http://www.anvisa.gov.br/legis/portarias/540_97.htm

  68. ABIA (2001) – Associação Brasileira das Indústrias da Alimentação. Compêndio da Legislação Brasileira de Alimentos, seção 3.31

  69. FAO/WHO (2007) Summary of evaluations performed by the Joint FAO/WHO Expert Committee on Food Additives. Sulfur dioxide. Food and Agriculture Organization/World Health Organization, Rome, Italy and Geneva, Switzerland

  70. European Commission (2011) Council Regulation of 25 October 2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) N. 608/2004, 1169/2011/EC. In: Official Journal, L 304/18, 22.11.2011

Download references

Acknowledgments

The authors would like to thank the Coordination for the Improvement of Higher Education Personnel (CAPES), National Council for Scientific and Technological Development (CNPq) for the financial support received through the process 431275/2018-1 (Call MCTIC/CNPq No. 28/2018 - Universal/Range B) and the Research Productivity Grant (process 311802/2017-6 (Call CNPq No. 12/2017). Authors also thank to Foundation for Research Support of Piauí (FAPEPI) for their financial support, and the Federal University of Piauí (UFPI) and Federal Institute of Piauí (IFPI) for providing the research and work facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Eiras.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 59 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Nascimento Marreiro Teixeira, A.S., Teixeira, P.R.S., de Oliveira Farias, E.A. et al. Babassu mesocarp (Orbignya phalerata Mart) nanoparticle-based biosensors for indirect sulfite detection in industrial juices. J Solid State Electrochem 24, 1143–1155 (2020). https://doi.org/10.1007/s10008-020-04546-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04546-w

Keywords

Navigation