Skip to main content
Log in

Biosensors in food processing

  • Review - Invited article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Optical based sensing systems that measure luminescence, fluorescence, reflectance and absorbance, etc., are some of the areas of applications of optical immunosensors. Immunological methods rely on specific binding of an antibody (monoclonal, polyclonal or engineered) to an antigen. Detection of specific microorganisms and microbial toxins requires immobilization of specific antibodies onto a given transducer that can produce signal upon attachment of typical microbe/microbial toxins. Inherent features of immunosensors such as specificity, sensitivity, speed, ease and on-site analysis can be made use for various applications. Safety of food and environment has been a major concern of food technologists and health scientists in recent years. There exists a strong need for rapid and sensitive detection of different components of foods and beverages along with the food borne and water borne pathogens, toxins and pesticide residues with high specificity. Biosensors present attractive, efficient alternative techniques by providing quick and reliable performances. There is a very good potential for application of biosensors for monitoring food quality and safety in food and bioprocessing industries in India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Agata S, Hanna R, Jerzy R (2007) Novel voltammetric biosensor for determining acrylamide in food samples. Biosens Bioelectron 22:2165–2170

    Article  Google Scholar 

  • Agnieszka K, Jerzy R, Hanna R (2008) A voltammetric biosensor based on glassy carbon electrodes modified with single-walled carbon nanotubes/hemoglobin for detection of acrylamide in water extracts from potato crisps. Sensors 8:5832–5844

    Article  Google Scholar 

  • Akshath US, Vinayaka AC, Thakur MS (2012) Quantum dots as nano plug-in for efficient NADH resonance energy routing. Biosens Bioelectron. doi:10.1016/j.bios.2012.05.003

  • Anon (2012a) Chemicals in meat cooked at high temperatures and cancer risk. National Cancer Institute at the National Institutes of Health. http://www.cancer.gov/cancertopics/factsheet/Risk/cooked-meats. Accessed 15 May 2012

  • Anon (2012b) Global Industry Analysts, Inc (2011) global biosensors market to reach us$12 billion by 2015 PR Web. http://www.prweb.com/releases/biosensors/medical_biosensors/prweb8067456.htm . Accessed 25 May 2012

  • Ansell RJ, Ramstrom O, Mosbach K (1996) Towards artificial antibodies prepared by molecular imprinting. Clin Chem 42:1506–1512

    CAS  Google Scholar 

  • Babu VR, Patra S, Karanth NG, Kumar MA, Thakur MS (2007) Development of a biosensor for caffeine. Anal Chim Acta 582:329–334

    Article  CAS  Google Scholar 

  • Belitz HD, Grosch W, Schieberle P (2009) Food chemistry, 4th edn. Springer, Berlin

    Google Scholar 

  • Boujday S, Nasri S, Salmain M, Pradier CM (2010) Surface IR immunosensors for label-free detection of benzo[a]pyrene. Biosens Bioelectron 26:1750–1754

    Article  CAS  Google Scholar 

  • Buck RP, Lindner E (1994) Recommendations for nomenclature of ion-sensitive electrodes. Pure Appl Chem 66(12):2527–2536

    Article  CAS  Google Scholar 

  • Cammann K (1977) Bio-sensors based on ion-selective electrodes. Fresenius J Anal Chem 287:1–9

    Article  CAS  Google Scholar 

  • Cass AE, Davis G, Francis GD, Hill HA, Aston WJ, Higgins IJ, Plotkin EV, Scott LD, Turner AP (1984) Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal Chem 56:667–671

    Article  CAS  Google Scholar 

  • Chaplin M (2004) What are biosensors? London south bank university. www.lsbu.ac.uk/biology/enztech/biosensors.html. Accessed 10 May 2012

  • Chemnitius GC, Suzuki M, Isobu K, Kimura J, Karube I, Schmid RD (1992) Thin-film polyamine biosensor: substrate specificity and application to fish freshness determination. Anal Chim Acta 263:93–100

    Article  CAS  Google Scholar 

  • Chouhan RS, VivekBabu K, Kumar MA, Neeta NS, Thakur MS, Amitha Rani BE, Pasha A, Karanth NGK, Karanth NG (2006) Detection of methyl parathion using immuno-chemiluminescence based image analysis using charge coupled device. Biosens Bioelectron 21:1264–1271

    Article  CAS  Google Scholar 

  • Clark LC (1956) Monitor and control of blood and tissue oxygen tensions. Trans Am Soc Art Int Org 2:41–48

    Google Scholar 

  • Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann NY Acad Sci 102:29–45

    Article  CAS  Google Scholar 

  • Cullen DC, Sethi RS, Lowe CR (1990) Multi-analyte miniature conductance biosensor. Anal Chim Acta 231:33–40

    Article  CAS  Google Scholar 

  • Dinckaya E, Akyilmaz E, Sezginturk MK, Ertas FN (2010) Sensitive nitrate determination in water and meat samples by amperometric biosensor. Prep Biochem Biotechnol 40:119–128

    Article  CAS  Google Scholar 

  • Divis C (1975) Notes on ethanol oxidation by a microbial electrode Acetobacter zylinum. Ann Microbiol 126A(2):175–186

    Google Scholar 

  • Durst RA, Baumner AJ, Murray RW, Buck RP, Andrieux CP (1997) Chemically modified electrodes: recommended terminology and definitions. Pure Appl Chem 69(6):1317–1323

    Article  CAS  Google Scholar 

  • Friedman M (2003) Chemistry, biochemistry, and safety of acrylamide: a review. J Agric Food Chem 51:4504–4526

    Article  CAS  Google Scholar 

  • Gardner LK, Lawrence GD (1993) Benzene production from decarboxylation of benzoic acid in the presence of ascorbic acid and a transition-metal catalyst. J Agric Food Chem 41(5):693–695

    Article  CAS  Google Scholar 

  • Gertz C, Klostermann S (2002) Analysis of acrylamide and mechanisms of its formation in deep-fried products. Eur J Lipid Sci Technol 104:762–771

    Article  CAS  Google Scholar 

  • Geyssant A, Dormois D, Barthelemy JC, Lacour JR (1985) Lactate determination with the lactate analyser LA 640: a critical study. Scand J Clin Lab Invest 45:145–149

    Article  CAS  Google Scholar 

  • Gouda MD, Thakur MS, Karanth NG (1997) A dual enzyme amperometric biosensor for monitoring organophosphorous pesticides. Biotechnol Tech 11:653–655

    Article  CAS  Google Scholar 

  • Gouda MD, Thakur MS, Karanth NG (2001) Stability studies of immobilized glucose oxidase using amperometric biosensor-effect of protein based stabilizing agents. Electroanal 13:849–855

    Article  CAS  Google Scholar 

  • Granda C, Moreira RG, Tichy SE (2004) Reduction of acrylamide formation in potato chips by low-temperature vacuum frying. J Food Sci 69:405–411

    Article  Google Scholar 

  • Granvogl M, Bugan S, Schieberle P (2006) Formation of amines and aldehydes from parent amino acids during thermal processing of cocoa and model systems: new insights into pathways of the Strecker reaction. J Agric Food Chem 54:1730–1739

    Article  CAS  Google Scholar 

  • Guilbault GG, Lubrano GJ (1973) An enzyme electrode for the amperometric detection of glucose. Anal Chim Acta 64:439–455

    Article  CAS  Google Scholar 

  • Guilbault GG, Montalvo JG (1970) An enzyme electrode for the substrate urea. J Am Chem Soc 92:2533–2538

    Article  CAS  Google Scholar 

  • Gulla KC, Gouda MD, Thakur MS, Karanth NG (2002) Reactivation of immobilized acetyl cholinesterase in an amperometric biosensor for organophosphorus pesticide. Biochim Biophys Acta 1597:133–139

    Article  CAS  Google Scholar 

  • Hinuma K, Matsuda J, Tanida N, Hori S, Tamura K, Ohno T, Kano M, Shimoyama T (1990) N-nitrosamines in the stomach with special reference to in vitro formation and kinetics after intragastric or intravenous administration in rats. Gastoenterol Jpn 25:417–424

    CAS  Google Scholar 

  • Kazerouni N, Sinha R, Hsu CH, Greenberg A, Rothman N (2001) Analysis of 200 items for benzo[a]pyrene and estimation of its intake in an epidemiologic study. Food Chem Toxicol 39:423–436

    Article  CAS  Google Scholar 

  • Kutner W, Wang J, Lher M, Buck RP (1998) Analytical aspects of chemically modified electrodes: classification, critical evaluation and recommendations. Pure Appl Chem 70(6):1301–1318

    Article  CAS  Google Scholar 

  • Lei Y, Chen W, Mulchandani A (2006) Microbial biosensors. Anal Chim Acta 568:200–210

    Article  CAS  Google Scholar 

  • Liedberg W, Nylander C, Lundstrm I (1983) Surface plasmon resonance for gas detection and biosensing. Sensor Actuators A Phys 4:299–304

    Article  CAS  Google Scholar 

  • Lin M, Liu Y, Sun Z, Zhang S, Yang Z, Ni C (2012) Electrochemical immunoassay of benzo[a]pyrene based on dual amplification strategy of electron-accelerated Fe3O4/polyaniline platform and multi-enzyme-functionalized carbon sphere label. Anal Chim Acta 722:100–106

    Article  CAS  Google Scholar 

  • Lubbers DW, Optiz N (1975) The pCO2-/pO2optode: a new probe for measurement of pCO2 or pO in fluids and gases. Z Res Nat C 30:532–533

    CAS  Google Scholar 

  • Luppa PB, Sokoll LJ, Chan DW (2001) Immunosensors - principles and applications to clinical chemistry. Clin Chim Acta 314:1–26

    Article  CAS  Google Scholar 

  • Male KB, Bouvrette P, Luong JHT, Gibbs RF (1996) Amperometric biosensor for total histamine, putrescine and cadavarine using diamine oxidase. J Food Sci 61:1012–1016

    Article  CAS  Google Scholar 

  • Mello LD, Kubota LT (2007) Biosensors as a tool for the antioxidant status evaluation. Talanta 72:335–348

    Article  CAS  Google Scholar 

  • MOFPI (2012) Vision 2015 volume-I and II. Ministry of food processing industries. www.mofpi.nic.in Accessed on 7 May 2012

  • Mosbach K, Danielsson B (1974) An enzyme thermistor. Biochim Biophys Acta 364:140–145

    Article  CAS  Google Scholar 

  • Mottram DS, Wedzicha BL, Dodson AT (2002) Acrylamide is formed in the Maillard reaction. Nature 419:448–449

    Article  CAS  Google Scholar 

  • Mulchandani A, Groom CA, Luong JHT (1991) Determination of sulfite in food products by an enzyme electrode. J Biotechnol 18:91–96

    Article  Google Scholar 

  • Mulliken PS (1916) A method for the identification of pure organic compounds. Wiley, New Jersey

    Google Scholar 

  • Nic M, Jirat J, Kosata B (2006) IUPAC compendium of chemical terminology, (the “Gold Book”). XML on-line corrected version: http://goldbook.iupac.org. Accessed 23 July 2012

    Google Scholar 

  • Rahman MS (2007) Handbook of food preservation, Secondth edn. CRC Press, Taylor & Francis Group, Boca Raton

    Book  Google Scholar 

  • Ranjan R, Rastogi NK, Thakur MS (2012) Development of immobilized biophotonic beads consisting of Photobacterium leigonathi for the detection of heavy metals and pesticide. J Hazard Mater. doi:10.1016/j.jhazmat.2012.04.076

  • Rasinger JD, Marrazza G, Briganti F, Scozzafava A, Mascini M, Turner APF (2005) Evaluation of an FIA Operated Amperometric bacterial biosensor based on pseudomonas putida f1 for the detection of benzene, toluene, ethylbenzene and xylenes (btex). Anal Lett 38:1531–1547

    Article  CAS  Google Scholar 

  • Rekha K, Gouda MD, Thakur MS, Karanth NG (2000a) Ascorbate oxidase based amperometric biosensor for organophosphorous pesticide monitoring. Biosens Bioelectron 15:499–502

    Article  CAS  Google Scholar 

  • Rekha K, Thakur MS, Karanth NG (2000b) Biosensors for the detection of organophosphorous pesticides. Crit Rev Biotechnol 20(3):213–235

    Article  CAS  Google Scholar 

  • Rogers K, Mulchandani A (1998) Affinity biosensors, methods in biotechnology, vol. 7. Humana Press, Totowa

    Book  Google Scholar 

  • Scanlan RA (1983) Formation and occurence of nitrosamines in food. Cancer Res 43(5):2435s–2440s

    CAS  Google Scholar 

  • Schmid AH, Stanca SE, Thakur MS, Thampia KR, Suri CR (2006) Site-directed antibody immobilization on gold substrate for surface plasmon resonance sensors. Sensor Actuators B Chem 113(1):297–303

    Article  Google Scholar 

  • Selvakumar LS, Thakur MS (2012a) Dipstick based immunochemiluminescence biosensor for the analysis of vitaminB12 in energy drinks: a novel approach. Anal Chim Acta 722:107–113

    Article  CAS  Google Scholar 

  • Selvakumar LS, Thakur MS (2012b) Nano RNA aptamer wire for analysis of vitamin B12. Anal Biochem. doi:10.1016/j.ab.2012.05.020

  • Shen LQ, Yang LJ, Peng TZ (1996) Amperometric determination of fish freshness by hypoxanthine biosensor. J Sci Food Agric 70:298–302

    Article  CAS  Google Scholar 

  • Shin SJ, Yamariaka H, Endo H, Watanabe E (1998) Development of an octopine biosensor and its application to the estimation of scallop freshness. Enzym Microb Technol 23:10–13

    Article  CAS  Google Scholar 

  • Silva N, Gil D, Karmali A, Matos M (2009) Biosensor for acrylamide based on an ion-selective electrode using whole cells of Pseudomonas aeruginosa containing amidase activity. Biocatal Biotransfor 27(2):143–151

    Article  CAS  Google Scholar 

  • Sujith Kumar PV, Basheer S, Ravi R, Thakur MS (2011) Comparative assessment of tea quality by various analytical and sensory methods with emphasis on tea polyphenols. J Food Sci Technol 48(4):440–446

    Article  Google Scholar 

  • Syed MA, Bhatti AS, Li C, Bokhari H (2011) Use of SPR biosensor for the study of proteolytic action of a serine protease enzyme. Am J Biomed Sci 3(4):253–257

    Article  CAS  Google Scholar 

  • Tareke E, Rydberg P, Karlsson P, Eriksson S, Tornqvist M (2002) Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem 50:4998–5006

    Article  CAS  Google Scholar 

  • Thakur MS (2012) Monograph on biosensors. National Design and Research Forum, Bangalore

    Google Scholar 

  • Thakur MS, Karanth NG (2003) Research and development on biosensors for food analysis in India. In: Malhotra BD, Turner APF (eds) Advances in biosensors, perspectives in biosensors. Elsevier Science BV, Amsterdam, pp 135–145

    Google Scholar 

  • Thakur MS, Chouhan RS, Vinayaka AC (2010) Biosensors for pesticides and food borne pathogens. In: Mutlu M (ed) Biosensors in food processing, safety and quality control. CRC Press Taylor & Francis Group, Florida, pp 147–192

    Chapter  Google Scholar 

  • Thevenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16:121–131

    Article  CAS  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  Google Scholar 

  • Turner APF, Karube I, Wilson GS (1987) Biosensors, fundamentals and applications. Oxford University Press, Oxford

    Google Scholar 

  • Updike SJ, Hicks GP (1967) The enzyme electrode. Nature 214:986–988

    Article  CAS  Google Scholar 

  • Venugopal V (2002) Biosensors in fish production and quality control. Biosens Bioelectron 17:147–157

    Article  CAS  Google Scholar 

  • Vinayaka AC, Thakur MS (2011) Photoabsorption and resonance energy transfer phenomenon in CdTe-protein bioconjugates: an insight into QD-biomolecular interactions. Bioconjug Chem 22:968–975

    Article  CAS  Google Scholar 

  • Watanabe E, Ando K, Karube I, Matsuoka H, Suzuki S (1983) Determination of hypoxanthine in fish meat with an enzyme sensor. J Food Sci 48:496–500

    Article  CAS  Google Scholar 

  • Watanabe E, Toyama K, Karube I, Matsuoka H, Suzuki S (1984) Enzyme sensor for hypoxanthine and inosine determination in edible fish. Appl Microbiol Biotechnol 19:18–21

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Director Central Food Technological Research Institute, Mysore for constant encouragement. We are also thankful to Council of Scientific and Industrial Research, Department of Biotechnology, Department of Science and Technology, National Programme for Micro And Small Systems, Indo-Swiss and Indo Swedish funding agencies for providing funds for conducting Biosensor and Nanobiotechnology research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Thakur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thakur, M.S., Ragavan, K.V. Biosensors in food processing. J Food Sci Technol 50, 625–641 (2013). https://doi.org/10.1007/s13197-012-0783-z

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-012-0783-z

Keywords

Navigation