Skip to main content

Advertisement

Log in

An Update on Aptamer-Based Multiplex System Approaches for the Detection of Common Foodborne Pathogens

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

Foodborne ailments constitute a public health challenge and pose an incredible economic burden in healthcare system around the globe. This dilemma has urged authorities and other entities working in field of food quality control and supply chain to play a pivotal role in ensuring food safety. Analytical strategies have been developed using numerous systematic evolution of ligands by exponential enrichment (SELEX) methods to assure food safety. High-affinity and high-sensitivity ssDNA and RNA aptamers against pathogens have emerged as a novel strategy, as compared to the more resource-demanding and complicated biochemical test-based approaches. Thus, this review aims to focus on some methods used in the selection of specific bare, modified, and conjugated aptamers and on the further analysis of selected aptamers using flow cytometer or post-SELEX modifications for enhanced detection of frequently diagnosed foodborne bacteria such as Bacillus sp., Campylobacter jejuni, Escherichia sp., Salmonella sp., Staphylococcus aureus, Shigella sp., Listeria monocytogenes, and Streptococcus pyogenes and/or targeting their cell components towards attaining fast, sensitive, and selective methods for the detection of pathogens in food(s) or other sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

FAM:

6-Carboxyfluorescein

ATCC:

American Type Culture Collection

FluMag-SELEX:

Aptamer fluorescent labeling and magnetic beads immobilization

AM-ECL:

Aptamer-magnetic bead-electrochemiluminescence

CE:

Capillary electrophoresis–SELEX

CDC:

Centers for Disease Control and Prevention

dPa:

Deoxyribonucleoside triphosphate 4-propynylpyrrole-2-carbaldehyde

Px:

Diol-modified 2-nitro-4-propynylpyrrole

DCE:

DNA capture element

ELASA:

Enzyme-linked aptamer sedimentation assay

ECDC:

European Centre for Disease Prevention and Control

FITC:

Fluorescein isothiocyannate

FRET:

Fluorescence resonance energy transfer

FACS:

Fluorescence-activated cell sorting

HTS:

High-throughpuT-SELEX

Ds:

Hydrophobic base 7-(2-thienyl) imidazo[4,5-b]pyridine

MREs:

Molecular recognition elements

NECEEM:

Non-equilibrium capillary electrophoresis of equilibrium mixtures

OMPs:

Outer membrane proteins

QD:

Quantum dot

SELEXp:

Systematic evolution of ligands by exponential enrichment

SEA:

Staphylococcus aureus enterotoxin A

SEB:

Staphylococcus aureus enterotoxin B

SERS:

Surface-enhanced Raman spectroscopy

TECS-SELEX:

Target expressed on cell surface-SELEX

UCNPs:

Up conversion nanoparticles

ROX:

X-rhodamine

References

  • Abbaspour A, Norouz-Sarvestani F, Noori A, Soltani N (2015) Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of Staphylococcus aureus Biosensors and Bioelectronics 68:149–155 doi:http://dx.doi.org/10.1016/j.bios.2014.12.040

  • Amaya-Gonzalez S, de los Santos Alvarez N, Miranda-Ordieres AJ, Lobo-Castanon MJ (2013) Aptamer-based analysis: a promising alternative for food safety control. Sensors 13:16292–16311. doi:10.3390/s131216292

    Article  CAS  Google Scholar 

  • Ashley J, Ji K, Li SFY (2012) Selection of bovine catalase aptamers using non-SELEX. Electrophoresis 33:2783–2789. doi:10.1002/elps.201200032

    Article  CAS  Google Scholar 

  • Baird FJ, Gasser RB, Jabbar A, Lopata AL (2014) Foodborne anisakiasis and allergy. Mol Cell Probes 28:167–174. doi:10.1016/j.mcp.2014.02.003

    Article  CAS  Google Scholar 

  • Bansal J, Singh I, Bhatnagar PK, Mathur PC (2013) DNA sequence detection based on Raman spectroscopy using single walled carbon nanotube. J Biosci Bioeng 115:438–441. doi:10.1016/j.jbiosc.2012.11.002

    Article  CAS  Google Scholar 

  • Baumstummler A, Lehmann D, Janjic N, Ochsner UA (2014) Specific capture and detection of Staphylococcus aureus with high-affinity modified aptamers to cell surface components. Lett Appl Microbiol 59:422–431. doi:10.1111/lam.12295

    Article  CAS  Google Scholar 

  • Beier R, Boschke E, Labudde D (2014a) New strategies for evaluation and analysis of SELEX experiments. Biomed Res Int 2014:849743. doi:10.1155/2014/849743

    Article  Google Scholar 

  • Beier R, Pahlke C, Quenzel P, Henseleit A, Boschke E, Cuniberti G, Labudde D (2014b) Selection of a DNA aptamer against norovirus capsid protein VP1. FEMS Microbiol Lett 351:162–169. doi:10.1111/1574-6968.12366

    Article  CAS  Google Scholar 

  • Bieke Van Dorsta JM, Bekaertb K, Martina ER, De Coena W, Dubruelc P, Blusta R, Robbensa J (2010) Recent advances in recognition elements of food and environmental biosensors. Biosens Bioelectron 26:1178–1194

    Article  CAS  Google Scholar 

  • Bini A, Mascini M, Mascini M, Turner AP (2011) Selection of thrombin-binding aptamers by using computational approach for aptasensor application. Biosensors & bioelectronics 26:4411–4416. doi:10.1016/j.bios.2011.04.053

    Article  CAS  Google Scholar 

  • Bruno JGKJ (2002) Use of magnetic beads in selection and detection of biotoxin aptamers by electrochemiluminescence and enzymatic methods. BioTechniques 32:175–180

    Google Scholar 

  • Bruno J (2014) Application of DNA aptamers and quantum dots to lateral flow test strips for detection of foodborne pathogens with improved sensitivity versus colloidal gold pathogens 3:341–355 doi:10.3390/pathogens3020341

  • Bruno JG, Carrillo MP, Phillips T (2008) In vitro antibacterial effects of antilipopolysaccharide DNA aptamer-C1qrs complexes. Folia Microbiol 53:295–302. doi:10.1007/s12223-008-0046-6

    Article  CAS  Google Scholar 

  • Bruno JG, Carrillo MP, Phillips T, Andrews CJ (2010) A novel screening method for competitive FRET-aptamers applied to E. coli assay development. J Fluoresc 20:1211–1223. doi:10.1007/s10895-010-0670-9

    Article  CAS  Google Scholar 

  • Bruno JG, Phillips T, Carrillo MP, Crowell R (2009) Plastic-adherent DNA aptamer-magnetic bead and quantum dot sandwich assay for Campylobacter detection. J Fluoresc 19:427–435. doi:10.1007/s10895-008-0429-8

    Article  CAS  Google Scholar 

  • Cao X et al (2009) Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus. Nucleic Acids Res 37:4621–4628. doi:10.1093/nar/gkp489

    Article  CAS  Google Scholar 

  • Carlin NI, Lindberg AA (1987) Monoclonal antibodies specific for Shigella flexneri lipopolysaccharides: clones binding to type IV, V, and VI antigens, group 3,4 antigen, and an epitope common to all Shigella flexneri and Shigella dysenteriae type 1 stains. Infect Immun 55:1412–1420

    CAS  Google Scholar 

  • Castro-Rosas J, Cerna-Cortes JF, Mendez-Reyes E, Lopez-Hernandez D, Gomez-Aldapa CA, Estrada-Garcia T (2012) Presence of faecal coliforms, Escherichia coli and diarrheagenic E. coli pathotypes in ready-to-eat salads, from an area where crops are irrigated with untreated sewage water. Int J Food Microbiol 156:176–180. doi:10.1016/j.ijfoodmicro.2012.03.025

    Article  Google Scholar 

  • CDC E (2013) Surveillance for foodborne disease outbreaks—United States, 1998–2008. Morb Mortal Wkly Rep 62

  • Chang Y-C, Yang C-Y, Sun R-L, Cheng Y-F, Kao W-C, Yang P-C (2013b) Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles. Scientific Reports 3:1863. doi:10.1038/srep01863

    Article  CAS  Google Scholar 

  • Chang YC, Yang CY, Sun RL, Cheng YF, Kao WC, Yang PC (2013a) Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles. Sci Rep 3:1863. doi:10.1038/srep01863

    Article  CAS  Google Scholar 

  • Chen CK (2007) Complex SELEX against target mixture: stochastic computer model, simulation, and analysis. Comput Methods Prog Biomed 87:189–200. doi:10.1016/j.cmpb.2007.05.008

    Article  CAS  Google Scholar 

  • Cho S, Lee SH, Chung WJ, Kim YK, Lee YS, Kim BG (2004) Microbead-based affinity chromatography chip using RNA aptamer modified with photocleavable linker. Electrophoresis 25:3730–3739. doi:10.1002/elps.200406103

    Article  CAS  Google Scholar 

  • Control CfD (2013) Surveillance for foodborne disease outbreaks—United States, 1998–2008 vol 60.

  • Das R, Karanicolas J, Baker D (2010) Atomic accuracy in predicting and designing noncanonical RNA structure. Nat Methods 7:291–294. doi:10.1038/nmeth.1433

    Article  CAS  Google Scholar 

  • DeGrasse JA (2012a) A single-stranded DNA aptamer that selectively binds to Staphylococcus aureus enterotoxin B. PLoS One 7:e33410. doi:10.1371/journal.pone.0033410

    Article  CAS  Google Scholar 

  • DeGrasse JA (2012b) A single-stranded DNA aptamer that selectively binds to Staphylococcus aureus enterotoxin B. PLoS One 7:7. doi:10.1371/journal.pone.0033410

    Article  CAS  Google Scholar 

  • Drabovich A (2009) Aptamers in bioanalysis. John Wiley & Sons, Inc.

  • Drobniewski FA (1993) Bacillus cereus and related species. Clin Microbiol Rev 6:324–338

    Article  CAS  Google Scholar 

  • Duan N, Ding X, He L, Wu S, Wei Y, Wang Z (2013a) Selection, identification and application of a DNA aptamer against Listeria monocytogenes. Food Control 33:239–243. doi:10.1016/j.foodcont.2013.03.011

    Article  CAS  Google Scholar 

  • Duan N, Ding X, Wu S, Xia Y, Ma X, Wang Z, Chen J (2013b) In vitro selection of a DNA aptamer targeted against Shigella dysenteriae. J Microbiol Methods 94:170–174. doi:10.1016/j.mimet.2013.06.016

    Article  CAS  Google Scholar 

  • Duan N, Wu S, Chen X, Huang Y, Xia Y, Ma X, Wang Z (2013c) Selection and characterization of aptamers against Salmonella typhimurium using whole-bacterium Systemic Evolution of Ligands by Exponential Enrichment (SELEX). J Agric Food Chem 61:3229–3234. doi:10.1021/jf400767d

    Article  CAS  Google Scholar 

  • Duan N, Chang B, Zhang H, Wang Z, Wu S (2016) Salmonella tymphimurium detection using a surface-enhanced raman scattering based aptasensor. Int J Food Microbiol 218:38–43. doi:10.1016/j.ijfoodmicro.2015.11.006

    Article  CAS  Google Scholar 

  • Duan N et al (2013d) A dual-color flow cytometry protocol for the simultaneous detection of Vibrio parahaemolyticus and Salmonella typhimurium using aptamer conjugated quantum dots as labels. Anal Chim Acta 804:151–158. doi:10.1016/j.aca.2013.09.047

    Article  CAS  Google Scholar 

  • Dwivedi HP, Smiley RD, Jaykus LA (2013) Selection of DNA aptamers for capture and detection of Salmonella typhimurium using a whole-cell SELEX approach in conjunction with cell sorting. Appl Microbiol Biotechnol 97:3677–3686. doi:10.1007/s00253-013-4766-4

    Article  CAS  Google Scholar 

  • Dwivedi H, Smiley RD, Jaykus L-A (2010a) Selection and characterization of DNA aptamers with binding selectivity to Campylobacter jejuni using whole-cell SELEX. Appl Microbiol Biotechnol 87:2323–2334. doi:10.1007/s00253-010-2728-7

    Article  CAS  Google Scholar 

  • Dwivedi HP, Smiley RD, Jaykus L-A (2010b) Selection and characterization of DNA aptamers with binding selectivity to Campylobacter jejuni using whole-cell SELEX. Appl Microbiol Biotechnol 87:2323–2334. doi:10.1007/s00253-010-2728-7

    Article  CAS  Google Scholar 

  • Elham Masoudipour SLM, Basiri M (2011) Specific detection of Shigella sonnei by enzyme-linked aptamer sedimentation assay. Progress in Biological Sciences 1:11–15

    Google Scholar 

  • Elham Masoudipour, Seyed Latif Mousavi, Basiri M (2011) Specific detection of Shigella sonnei by enzyme-linked aptamer sedimentation assay Progress in Biological Sciences 1

  • Escudero-Abarca BI, Suh SH, Moore MD, Dwivedi HP, Jaykus LA (2014) Selection, characterization and application of nucleic acid aptamers for the capture and detection of human norovirus strains. PLoS One 9:106805. doi:10.1371/journal.pone.0106805

    Article  CAS  Google Scholar 

  • Fan M, McBurnett SR, Andrews CJ, Allman AM, Bruno JG, Kiel JL (2008) Aptamer selection express: a novel method for rapid single-step selection and sensing of aptamers. Journal of Biomolecular Techniques : JBT 19:311–319

    Google Scholar 

  • Feng H, Beck J, Nassal M, Hu KH (2011) A SELEX-screened aptamer of human hepatitis B virus RNA encapsidation signal suppresses viral replication. PLoS One 6:27862. doi:10.1371/journal.pone.0027862

    Article  CAS  Google Scholar 

  • Fernandez PP (2006) Selection of an aptamer against surface exposed targets on yersinia pestis. Oklahoma State University, Research

    Google Scholar 

  • Florian Jarosch KB, Klussmann S (2006) In vitro selection using a dual RNA library that allows primerless selection. Nucleic Acids Res 34:86

    Article  CAS  Google Scholar 

  • Giamberardino A et al (2013) Ultrasensitive norovirus detection using DNA aptasensor technology. PLoS One 8:e79087. doi:10.1371/journal.pone.0079087

    Article  CAS  Google Scholar 

  • Gong W, Duan N, Wu S, Huang Y, Chen X, Wang Z (2015) Selection, identification, and application of dual DNA aptamers against Shigella sonnei. Anal Methods 7:3625–3631. doi:10.1039/C5AY00214A

    Article  CAS  Google Scholar 

  • Hamula C, Guthrie J, Zhang H, Li X, Le X (2006) Selection and analytical applications of aptamers. TrAC Trends Anal Chem 25:681–691. doi:10.1016/j.trac.2006.05.007

    Article  CAS  Google Scholar 

  • Hamula CL, Le XC, Li XF (2011) DNA aptamers binding to multiple prevalent M-types of Streptococcus pyogenes. Anal Chem 83:3640–3647. doi:10.1021/ac200575e

    Article  CAS  Google Scholar 

  • Hamula CLA, Peng H, Wang Z, Tyrrell GJ, Li X-F, Le XC (2016) An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes. Methods 97:51–57. doi:10.1016/j.ymeth.2015.12.005

    Article  CAS  Google Scholar 

  • Hamula CL, Zhang H, Guan LL, Li XF, Le XC (2008) Selection of aptamers against live bacterial cells. Anal Chem 80:7812–7819. doi:10.1021/ac801272s

    Article  CAS  Google Scholar 

  • Han SR, Lee SW (2013) In vitro selection of RNA aptamer specific to Salmonella typhimurium. J Microbiol Biotechnol 23:878–884. doi:10.4014/jmb.1212.12033

    Article  CAS  Google Scholar 

  • Hayat A, Andreescu S, Marty JL (2013) Design of PEG-aptamer two piece macromolecules as convenient and integrated sensing platform: application to the label free detection of small size molecules. Biosensors & bioelectronics 45:168–173. doi:10.1016/j.bios.2013.01.059

    Article  CAS  Google Scholar 

  • Helgason EOO, Caugant D et al (2000) Bacillus anthracis, Bacillus cereus and Bacillus thuringiensis—one species on the basis of genetic evidence. Appl Environ Microbiol 66:2627–2630

    Article  CAS  Google Scholar 

  • Hernández R, Vallés C, Benito AM, Maser WK, Xavier Rius F, Riu J (2014) Graphene-based potentiometric biosensor for the immediate detection of living bacteria. Biosens Bioelectron 54:553–557. doi:10.1016/j.bios.2013.11.053

    Article  CAS  Google Scholar 

  • Huang YK, Chen XJ, Xia Y, Wu SJ, Duan N, Ma XY, Wang ZP (2014) Selection, identification and application of a DNA aptamer against Staphylococcus aureus enterotoxin a. Anal Methods 6:690–697. doi:10.1039/c3ay41576g

    Article  CAS  Google Scholar 

  • Huenniger T, Wessels H, Fischer C, Paschke-Kratzin A, Fischer M (2014) Just in time-selection: a rapid semiautomated SELEX of DNA aptamers using magnetic separation and BEAMing. Anal Chem 86:10940–10947. doi:10.1021/ac503261b

    Article  CAS  Google Scholar 

  • Ikanovic M et al (2007) Fluorescence assay based on aptamer-quantum dot binding to Bacillus thuringiensis spores. J Fluoresc 17:193–199. doi:10.1007/s10895-007-0158-4

    Article  CAS  Google Scholar 

  • Iqbal A, Labib M, Muharemagic D, Sattar S, Dixon BR, Berezovski MV (2015) Detection of Cryptosporidium parvum oocysts on fresh produce using DNA aptamers. PLoS One 10:0137455. doi:10.1371/journal.pone.0137455

    Google Scholar 

  • Islam D, Tzipori S, Islam M, Lindberg AA (1993) Rapid detection of Shigella dysenteriae and Shigella flexneri in faeces by an immunomagnetic assay with monoclonal antibodies European. journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology 12:25–32

    Article  CAS  Google Scholar 

  • Jay HPDRDSL-A (2013) Selection of DNA aptamers for capture and detection of SalmonellaTyphimurium using a whole-cell SELEX approach in conjunction with cell sorting. Appl Microbiol Biotechnol 97:677–3686

    Google Scholar 

  • Jaykus HPDRDSL-A (2010) Selection and characterization of DNA aptamers with binding selectivity toCampylobacter jejuni using whole-cell SELEX. Appl Microbiol Biotechnol 87:2323–2334

    Article  CAS  Google Scholar 

  • Kasahara Y, Irisawa Y, Ozaki H, Obika S, Kuwahara M (2013) 2′,4′-BNA/LNA aptamers: CE-SELEX using a DNA-based library of full-length 2′-O,4′-C-methylene-bridged/linked bicyclic ribonucleotides. Bioorg Med Chem Lett 23:1288–1292. doi:10.1016/j.bmcl.2012.12.093

    Article  CAS  Google Scholar 

  • Kathariou S, Food Prot J (2002) Listeria monocytogenesvirulence and pathogenicity, a food safety perspective. J Food Prot 65:1811–1829

    Article  Google Scholar 

  • Keefe AD, Cload ST (2008) SELEX with modified nucleotides. Curr Opin Chem Biol 12:448–456. doi:10.1016/j.cbpa.2008.06.028

    Article  CAS  Google Scholar 

  • Kim YS, Gu MB (2014) Advances in aptamer screening and small molecule aptasensors. Adv Biochem Eng Biotechnol 140:29–67. doi:10.1007/10_2013_225

    CAS  Google Scholar 

  • Kim MA, Jeon HS, Shin SY, Baik BJ, Yang YM, Lee KY, Kim JG (2013b) Rapid detection of S. mutans surface antigen I/II using a sensitive monoclonal anti-Ag I/II antibody by ELISA. Monoclonal antibodies in immunodiagnosis and immunotherapy 32:336–340. doi:10.1089/mab.2013.0017

    Article  CAS  Google Scholar 

  • Kim YS, Song MY, Jurng J, Kim BC (2013c) Isolation and characterization of DNA aptamers against Escherichia coli using a bacterial cell-systematic evolution of ligands by exponential enrichment approach. Anal Biochem 436:22–28. doi:10.1016/j.ab.2013.01.014

    Article  CAS  Google Scholar 

  • Kim L, Yu H-W, Kim Y-H, Kim I, Jang A (2013a) Potential of fluorophore labeled aptamers for Pseudomonas Aeruginosa detection in drinking water. J Korean Soc Appl Biol Chem 56:165–171. doi:10.1007/s13765-013-3019-7

    Article  CAS  Google Scholar 

  • Kim YS, Chung J, Song MY, Jurng J, Kim BC (2014) Aptamer cocktails: enhancement of sensing signals compared to single use of aptamers for detection of bacteria. Biosens Bioelectron 54:195–198. doi:10.1016/j.bios.2013.11.003

    Article  CAS  Google Scholar 

  • Kimoto M, Yamashige R, Matsunaga K, Yokoyama S, Hirao I (2013) Generation of high-affinity DNA aptamers using an expanded genetic alphabet. Nat Biotechnol 31:453–457. doi:10.1038/nbt.2556

    Article  CAS  Google Scholar 

  • King NJ, Whyte R, Hudson JA (2007) Presence and significance of Bacillus cereus in dehydrated potato products. J Food Prot 70:514–520

    Article  Google Scholar 

  • Klussmann S, Nolte A, Bald R, Erdmann VA, Furste JP (1996) Mirror-image RNA that binds D-adenosine. Nat Biotechnol 14:1112–1115. doi:10.1038/nbt0996-1112

    Article  CAS  Google Scholar 

  • Kopylov AM, Spiridonova VA (2000) Combinatorial chemistry of nucleic acids: SELEX. Mol Biol 34:940–954. doi:10.1023/a:1026696330245

    Article  CAS  Google Scholar 

  • Kotaro Fukuda DV, Sekiya S, Hwang J, Kakiuchi N, Taira K, Shimotohno K, Kumar PKR, Nishikawa S (2003) Isolation and characterization of RNA aptamers specific for hepatitis C virus nonstructural proteins 3 protease issue. Eur J Biochem 267:3685–3694

    Article  Google Scholar 

  • Kotloff KL, Winickoff JP, Ivanoff B, Clemens JD, Swerdlow DL, Sansonetti PJ et al (1999) Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull World Health Organ 77:651–666

    CAS  Google Scholar 

  • Kuenne C, Vogets S, Pischimarov J, Oehm S, Goesmann A, Daniel R, Hain T, Chakraborty T (2010) Comparative analysis of plasmids in the genus Listeria. PLoS One 5:12511

    Article  CAS  Google Scholar 

  • Kulbachinskiy AV (2007) Methods for selection of aptamers to protein targets. Biochem Mosc 72:1505–1518. doi:10.1134/s000629790713007x

    Article  CAS  Google Scholar 

  • Lamba K et al (2016) Shiga toxin 1-producing Shigella sonnei infections, California, United States, 2014-2015. Emerg Infect Dis 22:679–686. doi:10.3201/eid2204.151825

    Article  CAS  Google Scholar 

  • Lee CH, Lee SH, Kim JH, Noh YH, Noh GJ, Lee SW (2015) Pharmacokinetics of a cholesterol-conjugated aptamer against the hepatitis C virus (HCV) NS5B. Protein Mol Ther Nucleic Acids 4:e254. doi:10.1038/mtna.2015.30

    Article  CAS  Google Scholar 

  • Li K, Lai Y, Zhang W, Jin L (2011) Fe2O3@Au core/shell nanoparticle-based electrochemical DNA biosensor for Escherichia coli detection. Talanta 84:607–613. doi:10.1016/j.talanta.2010.12.042

    Article  CAS  Google Scholar 

  • Lim YC, Kouzani AZ, Duan W (2010) Aptasensors: a review. J Biomed Nanotechnol 6:93–105

    Article  CAS  Google Scholar 

  • Lin H, Zhang W, Jia S, Guan Z, Yang CJ, Zhu Z (2014) Microfluidic approaches to rapid and efficient aptamer selection Biomicrofluidics 8 doi:10.1063/1.4890542

  • Litao Yang CWF, Cho EJ, Ellington AD (2007) Real-time rolling circle amplification for protein detection. Anal Chem 79:3320–3329

    Article  CAS  Google Scholar 

  • Liu Guo-qing LY-Q, Chao G, Xiao-feng Y, Ming Z, Kai Z, Xuejiao C, Yi Y (2014) In vitro selection of DNA aptamers and fluorescence-based recognition for rapid detection Listeria monocytogenes. J Integr Agric 13:1121–1129

    Article  CAS  Google Scholar 

  • Liu G-Q et al (2014) In vitro selection of DNA aptamers and fluorescence-based recognition for rapid detection Listeria monocytogenes. J Integr Agric 13:1121–1129. doi:10.1016/s2095-3119(14)60766-8

    Article  CAS  Google Scholar 

  • Lu E, Elizondo-Riojas M-A, Chang JT, Volk DE (2014) Aptaligner: automated software for aligning pseudorandom DNA X-aptamers from next-generation sequencing data. Biochemistry 53:3523–3525. doi:10.1021/bi500443e

    Article  CAS  Google Scholar 

  • Ma X, Jiang Y, Jia F, Yu Y, Chen J, Wang Z (2014) An aptamer-based electrochemical biosensor for the detection of Salmonella. J Microbiol Methods 98:94–98. doi:10.1016/j.mimet.2014.01.003

    Article  CAS  Google Scholar 

  • Martell RE, Nevins JR, Sullenger BA (2002) Optimizing aptamer activity for gene therapy applications using expression cassette SELEX. Mol Ther 6:30–34. doi:10.1006/mthe.2002.0624

    Article  CAS  Google Scholar 

  • Marty JL Hayat A (2014) Aptamer based electrochemical sensors for emerging environmental pollutants Front Chem 2

  • Mathew A, Maekawa T, Sakthikumar D (2015) Aptamers in targeted nanotherapy Current Topics in Medicinal Chemistry 15:1102–1114

  • Mayer G, Ahmed M-SL, Dolf A, Endl E, Knolle PA, Famulok M (2010) Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nat Protocols 5:1993–2004

    Article  CAS  Google Scholar 

  • McKeague M, Derosa MC (2012) Challenges and opportunities for small molecule aptamer development. Journal of nucleic acids 2012:748–913. doi:10.1155/2012/748913

    Article  CAS  Google Scholar 

  • McKeague M, Giamberardino A (2011) Advances in aptamer-based biosensors for food safety. Somerset (Ed.) edn. InTech,

  • McKeague M, Giamberardino A, DeRosa CM (2011) Advances in aptamer-based biosensors for food safety. In: Somerset V (ed). Carleton University, Department of Chemistry Ottawa, Ontario,canada,

  • McKeague M, Velu R, Hill K, Bardoczy V, Meszaros T, MC DR (2014) Selection and characterization of a novel DNA aptamer for label-free fluorescence biosensing of ochratoxin A. Toxins 6:2435–2452. doi:10.3390/toxins6082435

    Article  CAS  Google Scholar 

  • Mei ZM, Chu HQ, Chen W, Xue F, Liu J, Xu HN, Zhang R, Zheng L (2013) Ultrasensitive one-step rapid visual detection of bisphenol A in water samples by label-free aptasensor. Biosensors & bioelectronics 39:26–30

    Article  CAS  Google Scholar 

  • Ming Yang ZP, Ning Y, Chen Y, Zhou Q, Deng L (2013) Highly specific and cost-efficient detection of Salmonella Paratyphi A combining aptamers with single-walled carbon. Nanotubes Sensors 13:6865–6881

    Article  CAS  Google Scholar 

  • Moon J, Kim G, Lee S, Park S (2013) Identification of Salmonella Typhimurium-specific DNA aptamers developed using whole-cell SELEX and FACS analysis. J Microbiol Methods 95:162–166. doi:10.1016/j.mimet.2013.08.005

    Article  CAS  Google Scholar 

  • Moon J, Kim G, Park S (2014) Development of ssDNA aptamers for the capture and detection of Salmonella typhimurium. Anal Methods 6:7442–7448. doi:10.1039/c4ay01035c

    Article  CAS  Google Scholar 

  • Moon J, Kim G, Park SB, Lim J, Mo C (2015) Comparison of whole-cell SELEX methods for the identification of Staphylococcus aureus-specific DNA aptamers. Sensors 15:8884–8897. doi:10.3390/s150408884

    Article  CAS  Google Scholar 

  • Mossali C et al (2010) Sensitive detection and quantification of anisakid parasite residues in food products. Foodborne Pathog Dis 7:391–397. doi:10.1089/fpd.2009.0428

    Article  CAS  Google Scholar 

  • Nitzsche R, Rosenheinrich M, Kreikemeyer B, Oehmcke-Hecht S (2015) Streptococcus pyogenes triggers activation of the human contact system by streptokinase. Infect Immun 83:3035–3042. doi:10.1128/IAI.00180-15

    Article  CAS  Google Scholar 

  • Niyogi, SK, (2005) Shigellosis J Microbiol: 133–143

  • Nonaka Y, Yoshida W, Abe K, Ferri S, Schulze H, Bachmann TT, Ikebukuro K (2013) Affinity improvement of a VEGF aptamer by in silico maturation for a sensitive VEGF-detection system. Anal Chem 85:1132–1137. doi:10.1021/ac303023d

    Article  CAS  Google Scholar 

  • Ohk SH, Koo OK, Sen T, Yamamoto CM, Bhunia AK (2010) Antibody-aptamer functionalized fibre-optic biosensor for specific detection of Listeria monocytogenes from food. J Appl Microbiol 109:808–817. doi:10.1111/j.1365-2672.2010.04709.x

    Article  CAS  Google Scholar 

  • Ohuchi SP, Ohtsu T, Nakamura Y (2006) Selection of RNA aptamers against recombinant transforming growth factor-beta type III receptor displayed on cell surface. Biochimie 88:897–904. doi:10.1016/j.biochi.2006.02.004

    Article  CAS  Google Scholar 

  • Park H-C, Baig I, Lee S-C, Moon J-Y, Yoon M-Y (2014a) Development of ssDNA aptamers for the sensitive detection of Salmonella typhimurium and Salmonella enteritidis. Appl Biochem Biotechnol 174:793–802. doi:10.1007/s12010-014-1103-z

    Article  CAS  Google Scholar 

  • Park H-C, Baig IA, Lee S-C, Moon J-Y, Yoon M-Y (2014b) Development of ssDNA aptamers for the sensitive detection of Salmonella typhimurium and Salmonella enteritidis. Appl Biochem Biotechnol 174:793–802. doi:10.1007/s12010-014-1103-z

    Article  CAS  Google Scholar 

  • Radi A-E (2011) Electrochemical aptamer-based biosensors. Recent Advances and Perspectives International Journal of Electrochemistry 2011:1–17. doi:10.4061/2011/863196

    Article  CAS  Google Scholar 

  • Raghavendra Joshi HJ, Hari P, Dwivedi TMA, Kumar S, Jayku L-A, Schefers J, Sreevatsan S (2009) Selection, characterization, and application of DNA aptamers for the capture and detection ofSalmonella entericaserovars. Mol Cell Probes 23:20–28

    Article  CAS  Google Scholar 

  • Savory N et al (2013) In silico maturation of binding-specificity of DNA aptamers against Proteus mirabilis. Biotechnol Bioeng 110:2573–2580. doi:10.1002/bit.24922

    Article  CAS  Google Scholar 

  • Scognamiglio V, Arduini F, Palleschi G, Rea G (2014) Biosensing technology for sustainable food safety. TrAC Trends Anal Chem 62:1–10. doi:10.1016/j.trac.2014.07.007

    Article  CAS  Google Scholar 

  • Sett A (2012) Aptasensors in health. Environment and Food Safety Monitoring Open Journal of Applied Biosensor 01:9–19. doi:10.4236/ojab.2012.12002

    Article  CAS  Google Scholar 

  • Shi X, He F, Lian Y, Yan D, Zhang X (2014) A new aptamer/SWNTs IDE-SPQC sensor for rapid and specific detection of Group A Streptococcus. Sensors and Actuators B: Chemical 198:431–437. doi:10.1016/j.snb.2014.03.067

    Article  CAS  Google Scholar 

  • So HM et al. (2008) Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors Small 4:197–201

  • Somer L, Kashi Y (2003) A PCR method based on 16S rRNA sequence for simultaneous detection of the genus listeria and the species Listeria monocytogenesin food products. J Food Prot 66:1658–1665

    Article  CAS  Google Scholar 

  • Spiridonova LN (2014) Introgression of nuclear and mitochondrial DNA markers of Mus musculus musculus to aboriginal populations of wild mice from Central Asia (M-m. wagneri) and South Siberia (M-m. gansuensis). Mol Biol 48:75–83. doi:10.1134/s0026893314010142

    Article  CAS  Google Scholar 

  • Spiridonova VA, Levashov PA, Ovchinnikova ED, Afanasieva OI, Glinkina KA, Adamova IY, Pokrovsky SN (2014) DNA aptamer-based sorbents for binding human IgE. Russian Journal of Bioorganic Chemistry 40:151–154. doi:10.1134/s1068162014020125

    Article  CAS  Google Scholar 

  • Stoltenburg R, Reinemann C, Strehlitz B (2005b) FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal Bioanal Chem 383:83–91. doi:10.1007/s00216-005-3388-9

    Article  CAS  Google Scholar 

  • Stoltenburg R, Reinemann C, Strehlitz B (2005a) FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal Bioanal Chem 383:83–91. doi:10.1007/s00216-005-3388-9

    Article  CAS  Google Scholar 

  • Stoltenburg R, Reinemann C, Strehlitz B (2007) SELE—a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24:381–403. doi:10.1016/j.bioeng.2007.06.001

    Article  CAS  Google Scholar 

  • Stratis-Cullum DN, McMasters S, Pellegrino PM (2009) Evaluation of relative aptamer binding to campylobacter jejuni bacteria using affinity probe capillary electrophoresis. Anal Lett 42:2389–2402. doi:10.1080/00032710903137376

    Article  CAS  Google Scholar 

  • Subramanian Viswanathan JR (2008) Nanomaterials in electrochemical biosensors for food analysis—a review food and nutrition sciences 58:157–164

  • Suh SH, Jaykus L-A (2013) Nucleic acid aptamers for capture and detection of Listeria spp. J Biotechnol 167:454–461. doi:10.1016/j.jbiotec.2013.07.027

    Article  CAS  Google Scholar 

  • Suh SH, Dwivedi HP, Jaykus L-A (2014b) Development and evaluation of aptamer magnetic capture assay in conjunction with real-time PCR for detection of Campylobacter jejuni. LWT Food Sci Technol 56:256–260. doi:10.1016/j.lwt.2013.12.012

    Article  CAS  Google Scholar 

  • Suh SH, Dwivedi HP, Choi SJ, Jaykus LA (2014a) Selection and characterization of DNA aptamers specific for Listeria species. Anal Biochem 459:39–45. doi:10.1016/j.ab.2014.05.006

    Article  CAS  Google Scholar 

  • Sur DS, Ramamurthy T, Deen J, Bhattarcharya SK et al (2004) Shigellosis: challenges and management issues. Indian J Med 120:454–462

    Google Scholar 

  • Thiel KW, Giangrande PH (2009) Therapeutic applications of DNA and RNA aptamers. Oligonucleotides 19:209–222. doi:10.1089/oli.2009.0199

    Article  CAS  Google Scholar 

  • Thiem VD et al (2004) Detection of Shigella by a PCR assay targeting the ipaH gene suggests increased prevalence of shigellosis in Nha Trang, Vietnam. Journal of Clinical Microbiology 42:2031–2035. doi:10.1128/JCM.42.5.2031-2035.2004

    Article  CAS  Google Scholar 

  • Tibor Hianik VO, Sonlajtnerova M, Grman I (2007) Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin. bielectrochemistry 70:127–133

    Article  CAS  Google Scholar 

  • Tombelli SMM, Mascini M (2007) Aptamers-based assays for diagnostics, environmental and food analysis. Biomol Eng 24:191–200

    Article  CAS  Google Scholar 

  • Tombelli S, Minunni M, Mascini M (2007) Aptamers-based assays for diagnostics, environmental and food analysis. Biomol Eng 24:191–200. doi:10.1016/j.bioeng.2007.03.003

    Article  CAS  Google Scholar 

  • Torres-Chavolla E, Alocilja EC (2009) Aptasensors for detection of microbial and viral pathogens. Biosensors & bioelectronics 24:3175–3182. doi:10.1016/j.bios.2008.11.010

    Article  CAS  Google Scholar 

  • Tuerk CALG (1990a) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. BioTechniques. doi:10.2144/000113786

    Google Scholar 

  • Tuerk CALG (1990b) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. BioTechniques 249:505–510. doi:10.2144/000113786

    CAS  Google Scholar 

  • Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C (2010) An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv 28:232–254. doi:10.1016/j.biotechadv.2009.12.004

    Article  CAS  Google Scholar 

  • Walker MJ et al (2014) Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin Microbiol Rev 27:264–301. doi:10.1128/CMR.00101-13

    Article  CAS  Google Scholar 

  • Wang Y-X, Ye Z-Z, Si C-Y, Ying Y-B (2012) Application of aptamer based biosensors for detection of pathogenic microorganisms. Chin J Anal Chem 40:634–642. doi:10.1016/s1872-2040(11)60542-2

    Article  CAS  Google Scholar 

  • Wang KY, Zeng YL, Yang XY, Li WB, Lan XP (2011) Utility of aptamer-fluorescence in situ hybridization for rapid detection of Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis 30:273–278. doi:10.1007/s10096-010-1074-0

    Article  Google Scholar 

  • Warda AK et al (2016) Linking Bacillus cereus genotypes and carbohydrate utilization capacity. PLoS One 11:e0156796. doi:10.1371/journal.pone.0156796

    Article  CAS  Google Scholar 

  • Wei Wu ZF, Zhaoa S, Lua X, Yua L, Meia T, Zeng L (2015) A simple aptamer biosensor for Salmonellae enteritidis based on fluorescence-switch signaling graphene oxide. RSC Adv 4:22009–22012. doi:10.1039/b000000x

    Article  CAS  Google Scholar 

  • Wenhe Wu JZ, Zheng M, Zhong Y, Yang J, Zhao Y, Wu W, Wei Ye JW, Wang Q, Lu J (2012) An aptamer-based biosensor for colorimetric detection of Escherichia coli O157:H7. PLoS One 7:9. doi:10.1371/journal.pone.0048999.g002

    Google Scholar 

  • Wu LH, Curran JF (1999) An allosteric synthetic DNA. Nucleic Acids Research 27:1512–1516. doi:10.1093/nar/27.6.1512

    Article  CAS  Google Scholar 

  • Wu S, Duan N, Shi Z, Fang C, Wang Z (2014) Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels. Anal Chem 86:3100–3107. doi:10.1021/ac404205c

    Article  CAS  Google Scholar 

  • Xi Z, Huang R, Deng Y, He N (2014) Progress in selection and biomedical applications of aptamers. J Biomed Nanotechnol 10:3043–3062

    Article  CAS  Google Scholar 

  • Xu D-M, Wu M, Zou Y, Zhang Q, Wu C-C, Zhou Y, Liu X-J (2011) Application of aptamers in food safety. Chin J Anal Chem 39:925–933. doi:10.1016/s1872-2040(10)60447-1

  • Yang X-H, Kong W-J, Yang M-H, Zhao M, Ouyang Z (2013) Application of aptamer identification technology in rapid analysis of mycotoxins. Chin J Anal Chem 41:297–306. doi:10.1016/s1872-2040(13)60630-1

  • Yuan J, Tao Z, Yu Y, Ma X, Xia Y, Wang L, Wang Z (2014) A visual detection method for Salmonella Typhimurium based on aptamer recognition and nanogold labeling. Food Control 37:188–192. doi:10.1016/j.foodcont.2013.09.046

    Article  CAS  Google Scholar 

  • Yun W, Li H, Chen S, Tu D, Xie W, Huang Y (2014) Aptamer-based rapid visual biosensing of melamine in whole milk. Eur Food Res Technol 238:989–995. doi:10.1007/s00217-014-2166-3

    Article  CAS  Google Scholar 

  • Zelada-Guillén GA, Bhosale SV, Riu J, Rius FX (2010) Real-time potentiometric detection of bacteria in complex samples. Anal Chem 82:9254–9260. doi:10.1021/ac101739b

    Article  CAS  Google Scholar 

  • Zhang X, Du X-J, Guan C, Li P, Zheng W-J, Wang S (2015) Detection of Vibrio cholerae by isothermal cross-priming amplification combined with nucleic acid detection strip analysis. Mol Cell Probes 29:208–214. doi:10.1016/j.mcp.2015.05.001

    Article  CAS  Google Scholar 

  • Zhijun Guoa JR, Wanga J, Wanga E (2011) Single-walled carbon nanotubes based quenching of free FAM-aptamer for selective determination of ochratoxin A. Talanta 85:2517–2521

    Article  CAS  Google Scholar 

  • Zhou L, Wang M-H, Wang J-P, Ye Z-Z (2011) Application of biosensor surface immobilization methods for aptamer Chinese. J Anal Chem 39:432–438. doi:10.1016/s1872-2040(10)60429-x

    CAS  Google Scholar 

  • Zimmermann B, Bilusic I, Lorenz C, Schroeder R (2010) Genomic SELEX: a discovery tool for genomic aptamers. Methods (San Diego, Calif) 52:125–132. doi:10.1016/j.ymeth.2010.06.004

    Article  CAS  Google Scholar 

  • Zuo PLX, Dominguez DC, Ye BC (2013) A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection. Biosensor Bioelectron 13:3921–3928

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Omar Mukama or Zhouping Wang.

Ethics declarations

Conflict of Interest

Omar Mukama declares that he has no conflict of interest. Jean Paul Sinumvayo declares that he has no conflict of interest. Muhammad Shamoon declares that he has no conflict of interest. Muhammad Shoaib declares that he has no conflict of interest. Henriette Mushimiyimana declares that he has no conflict of interest. Waseem Safdar declares that he has no conflict of interest. Leo Bemena declares that he has no conflict of interest. Peter Rwibasira declares that he has no conflict of interest. Samson Mugisha declares that he has no conflict of interest. Zhouping Wang declares that he has no conflict of interest.

Informed Consent

Not applicable. This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukama, O., Sinumvayo, J.P., Shamoon, M. et al. An Update on Aptamer-Based Multiplex System Approaches for the Detection of Common Foodborne Pathogens. Food Anal. Methods 10, 2549–2565 (2017). https://doi.org/10.1007/s12161-017-0814-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-017-0814-5

Keywords

Navigation