Skip to main content
Log in

Plastic-Adherent DNA Aptamer-Magnetic Bead and Quantum Dot Sandwich Assay for Campylobacter Detection

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

DNA aptamers were developed against MgCl2-extracted surface proteins from Campylobacter jejuni. The two highest affinity aptamers were selected for use in a magnetic bead (MB) and red quantum dot (QD)-based sandwich assay scheme. The assay was evaluated using both heat-killed and live C. jejuni and exhibits detection limits as low as an average of 2.5 colony forming unit (cfu) equivalents in buffer and 10–250 cfu in various food matrices. The assay exhibits low cross-reactivity with bacterial species outside the Campylobacter genus, but exhibits substantial cross-reactivity with C. coli and C. lari. The assay was evaluated with a spectrofluorometer and a commercially available handheld fluorometer, which yielded comparable detection limits and ranges. Remarkably, the sandwich assay components adhere to the inside face of polystyrene cuvettes even in food matrices near neutral pH, thereby enabling a rapid homogeneous assay, because fluorescence is concentrated to a small, thin planar area and background fluorescence from the bulk solution is minimized. The plastic cuvette-adherent technology coupled to a sensitive handheld fluorometer may enable rapid (15–20 min), portable detection of foodborne pathogens from “farm-to-fork” by obviating the slow enrichment culture phase used by other food safety tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Benoit PW, Donahue DW (2003) Methods for rapid separation and concentration of bacteria in food that bypass time-consuming cultural enrichment. J Food Prot 66:1935–1948

    PubMed  Google Scholar 

  2. Kim S, Labbe RG, Ryu S (2000) Inhibitory effects of collagen on the PCR for detection of Clostridium perfringens. Appl Environ Microbiol 66:1213–1215. doi:10.1128/AEM.66.3.1213-1215.2000

    Article  PubMed  CAS  Google Scholar 

  3. Lübeck PS, Wolffs P, On SLW, Ahrens P, Radström P, Hoorfar J (2003) Toward an international standard for PCR-based detection of food-borne thermotolerant Campylobacters: assay development and analytical validation. Appl Environ Microbiol 69:5664–5660. doi:10.1128/AEM.69.9.5664-5669.2003

    Article  PubMed  CAS  Google Scholar 

  4. Abolmaaty A, Gu W, Witkowsky R, Levin RE (2007) The use of activated charcoal for the removal of PCR inhibitors from oyster samples. J Microbiol Methods 68:349–352. doi:10.1016/j.mimet.2006.09.012

    Article  PubMed  CAS  Google Scholar 

  5. Yu H, Bruno JG (1996) Immunomagnetic-electrochemiluminescent detection of Escherichia coli 0157 and Salmonella typhimurium in foods and environmental water samples. Appl Environ Microbiol 62:587–592

    PubMed  CAS  Google Scholar 

  6. Tu SI, Golden M, Cooke P, Paoli G, Gehring A (2005) Detection of Escherichia coli O157:H7 through the formation of sandwiched complexes with immunomagnetic and fluorescent beads. J Rapid Methods Autom Microbiol 13:269–282. doi:10.1111/j.1745-4581.2005.00026.x

    Article  Google Scholar 

  7. Dwarakanath S, Satyanarayana S, Bruno JG, Vattem D, Rao PM, Ikanovic M, Phillips T (2006) Ultrasensitive fluorescent nanoparticle-based binding assays for foodborne and waterborne pathogens of clinical interest. J Clin Ligand Assay 29:136–142

    Google Scholar 

  8. Hahn MA, Tabb JS, Krauss TD (2005) Detection of single bacterial pathogens with semiconductor quantum dots. Anal Chem 77:4861–4869. doi:10.1021/ac050641i

    Article  PubMed  CAS  Google Scholar 

  9. Su XL, Li Y (2004) Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli O157:H7. Anal Chem 76:4806–4810. doi:10.1021/ac049442+

    Article  PubMed  CAS  Google Scholar 

  10. Wang H, Li Y, Slavik M (2007) Rapid detection of Listeria monocytogenes using quantum dots and nanobeads-based optical biosensor. J Rapid Methods Automat Microbiol 15:67–76

    Article  Google Scholar 

  11. Wang L, Zhao W, O’Donoghue MB, Tan W (2007) Fluorescent nanoparticles for multiplexed bacteria monitoring. Bioconjug Chem 18:297–301. doi:10.1021/bc060255n

    Article  PubMed  CAS  Google Scholar 

  12. Zhao X, Hilliard LR, Mechery SJ, Wang Y, Bagwe RP, Jin S, Tan W (2004) A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc Natl Acad Sci USA 101:15027–15032. doi:10.1073/pnas.0404806101

    Article  PubMed  CAS  Google Scholar 

  13. Bruno JG, Kiel JL (2002) Use of magnetic beads in selection and detection of biotoxin aptamers by ECL and enzymatic methods. Biotechniques 32:178–183

    PubMed  CAS  Google Scholar 

  14. Bruno JG, Carrillo MP, Phillips T, King B (2008) Development of DNA aptamers for cytochemical detection of acetylcholine. In Vitro Cell Dev Biol Anim 44:63–72. doi:10.1007/s11626-008-9086-0

    Article  PubMed  CAS  Google Scholar 

  15. Jayasena SD (1999) Aptamers an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45:1628–1650

    PubMed  CAS  Google Scholar 

  16. Tombelli S, Minunni M, Mascini M (2007) Aptamer-based assays for diagnostics, environmental and food analysis. Biomol Eng 24:191–200. doi:10.1016/j.bioeng.2007.03.003

    Article  PubMed  CAS  Google Scholar 

  17. Jenison RD, Gill SC, Pardi A, Polisky B (1994) High-resolution molecular discrimination by RNA. Science 263:1425–1429. doi:10.1126/science.7510417

    Article  PubMed  CAS  Google Scholar 

  18. Bruno JG, Carrillo MP, Phillips T (2007) Effects of immobilization chemistry on enzyme-linked aptamer assays for Leishmania surface antigens. J Clin Ligand Assay 30:37–43

    Google Scholar 

  19. Bruno JG, Carrillo MP, Phillips T, Vail NK, Hanson D (2008) Competitive FRET-aptamer-based detection of methylphosphonic acid: a common nerve agent metabolite. J Fluorescence 18:867–876. doi:10.1007/s10895-008-0316-3

    Article  CAS  Google Scholar 

  20. Ikanovic M, Rudzinski WE, Bruno JG, Allman A, Carrillo MP, Dwarakanath S, Bhahdigadi S, Rao P, Kiel JL, Andrews CJ (2007) Fluorescence assay based on aptamer-quantum dot binding to Bacillus thuringiensis spores. J Fluorescence 17:193–199. doi:10.1007/s10895-007-0158-4

    Article  CAS  Google Scholar 

  21. McMasters S, Stratis-Cullum DN (2006) Evaluation of aptamers as molecular recognition elements for pathogens using capillary electrophoresis analysis. Proc SPIE 6380:1605–1611

    Google Scholar 

  22. Li YY, Zhang C, Li BS, Zhao LF, Li XB, Yang WJ, Xu SQ (2007) Ultrasensitive densitometry detection of cytokines with nanoparticle-modified aptamers. Clin Chem 53:1061–1066. doi:10.1373/clinchem.2006.082271

    Article  PubMed  CAS  Google Scholar 

  23. Vivekananda J, Kiel JL (2006) Anti-Francisella tularensis DNA aptamers detect tularemia antigen from different subspecies by aptamer-linked immobilized sorbent assay. Lab Invest 86:610–618

    PubMed  CAS  Google Scholar 

  24. Bruno JG, Francis K, Ikanovic M, Rao P, Dwarakanath S, Rudzinski WE (2007) Reovirus detection using immunomagnetic-fluorescent nanoparticle sandwich assays. J Bionanosci 1:84–89. doi:10.1166/jbns.2007.015

    Article  Google Scholar 

  25. Klein DCG, Gurevich L, Janssen JW, Kouwenhoven LP, Carbeck JD, Sohn LL (2001) Ordered stretching of single molecules of DNA between microfabricated polystyrene lines. Appl Phys Lett 78:2396–2398. doi:10.1063/1.1365099

    Article  CAS  Google Scholar 

  26. Allemand JF, Bensimon D, Jullien L, Bensimon A, Croquette V (1997) pH-dependent specific binding and combing of DNA. Biophys J 73:2064–2070

    Article  PubMed  CAS  Google Scholar 

  27. Quast B (2001) A compact, handheld laboratory fluorometer. Am Biotechnol Lab 18:68

    Google Scholar 

  28. Hallsworth JE, Yakimov ME, Golyshin PN, Gillion JLM, D’Auria G, de Lima Alves F, La Cono V, Genovese M, McKew BA, Hayes SL, Harris G, Giuliano L, Timmis KN, McGenity TJ (2007) Limits of life in MgCL2-containing environments: chaotropicity defines the window. Environ Microbiol 9:801–803. doi:10.1111/j.1462-2920.2006.01212.x

    Article  PubMed  CAS  Google Scholar 

  29. Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31:3429–3431. doi:10.1093/nar/gkg599

    Article  PubMed  CAS  Google Scholar 

  30. SantaLucia J (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci USA 95:1460–1465. doi:10.1073/pnas.95.4.1460

    Article  PubMed  CAS  Google Scholar 

  31. Rosenberg M (1981) Bacterial adherence to polystyrene: a replica method of screening for bacterial hydrophobicity. Appl Environ Microbiol 42:375–377

    PubMed  CAS  Google Scholar 

  32. Klotz SA, Drutz DJ, Zajic JE (1985) Factors governing adherence of Candida species to plastic surfaces. Infect Immun 50:97–101

    PubMed  CAS  Google Scholar 

  33. Gamble R, Muriana PM (2007) Microplate fluorescence assay for measurement of the ability of strains of Listeria monocytogenes from meat and meat-processing plants to adhere to abiotic surfaces. Appl Environ Microbiol 73:5235–5244. doi:10.1128/AEM.00114-07

    Article  PubMed  CAS  Google Scholar 

  34. Pompilio A, Piccolomini R, Picciani C, D’Antonio D, Savini V, Di Bonaventura G (2008) Factors associated with adherence to and biofilm formation on polystyrene by Stenotrophomonas maltophilia: the role of cell surface hydrophobicity and motility. FEMS Microbiol Lett 287:41–47. doi:10.1111/j.1574-6968.2008.01292.x

    Article  PubMed  CAS  Google Scholar 

  35. Pan Q, Zhang XL, Wu HY, He PW, Wang F, Zhang MS, Hu JM, Xia B, Wu J (2005) Aptamers that preferentially bind Type IVB pilli and inhibit human monocytic-cell invasion by Salmonella enterica serovar Typhi. Antimicrob Agents Chemother 49:4052–4060. doi:10.1128/AAC.49.10.4052-4060.2005

    Article  PubMed  CAS  Google Scholar 

  36. Bannantine JP, Radosevich TJ, Stabel JR, Sreevatsan S, Kapur V, Paustian ML (2007) Development and characterization of monoclonal antibodies and aptamers against the major antigens of Mycobacterium avium subsp. paratuberculosis. Clin Vaccine Immunol 14:518–526. doi:10.1128/CVI.00022-07

    Article  PubMed  CAS  Google Scholar 

  37. Bruno JG, Carrillo MP, Phillips T (2008) In vitro antibacterial effects of anti-lipopolysaccharide DNA aptamer-C1qrs complexes. Folia Microbiol (Praha) 53:295–302. doi:10.1007/s12223-008-0046-6

    Article  CAS  Google Scholar 

  38. Hamula CLA, Zhang H, Guan LL, Li XF, Le CC (2008) Selection of aptamers against live bacterial cells. Anal Chem 80:7812–7819

    Article  PubMed  CAS  Google Scholar 

  39. Skottrup PD, Nicolaisen M, Justesen AF (2008) Towards on-site pathogen detection using antibody-based sensors. Biosens Bioelectron 24:339–348. doi:10.1016/j.bios.2008.06.045

    Article  PubMed  CAS  Google Scholar 

  40. Sperber WH (2005) HACCP does not work from farm to table. Food Contr 16:511–514. doi:10.1016/j.foodcont.2003.10.013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. Bruno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruno, J.G., Phillips, T., Carrillo, M.P. et al. Plastic-Adherent DNA Aptamer-Magnetic Bead and Quantum Dot Sandwich Assay for Campylobacter Detection. J Fluoresc 19, 427–435 (2009). https://doi.org/10.1007/s10895-008-0429-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-008-0429-8

Keywords

Navigation