Skip to main content

Advertisement

Log in

Selection and characterization of DNA aptamers with binding selectivity to Campylobacter jejuni using whole-cell SELEX

  • Methods and Protocols
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The need for pre-analytical sample processing prior to the application of rapid molecular-based detection of pathogens in food and environmental samples is well established. Although immunocapture has been applied in this regard, alternative ligands such as nucleic acid aptamers have advantages over antibodies such as low cost, ease of production and modification, and comparable stability. To identify DNA aptamers demonstrating binding specificity to Campylobacter jejuni cells, a whole-cell Systemic Evolution of Ligands by EXponential enrichment (SELEX) method was applied to a combinatorial library of FAM-labeled single-stranded DNA molecules. FAM-labeled aptamer sequences with high binding affinity to C. jejuni A9a as determined by flow cytometric analysis were identified. Aptamer ONS-23, which showed particularly high binding affinity in preliminary studies, was chosen for further characterization. This aptamer displayed a dissociation constant (K d value) of 292.8 ± 53.1 nM with 47.27 ± 5.58% cells fluorescent (bound) in a 1.48-μM aptamer solution. Binding assays to assess the specificity of aptamer ONS-23 showed high binding affinity (25–36%) for all other C. jejuni strains screened (inclusivity) and low apparent binding affinity (1–5%) with non-C. jejuni strains (exclusivity). Whole-cell SELEX is a promising technique to design aptamer-based molecular probes for microbial pathogens without tedious isolation and purification of complex markers or targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36

    CAS  Google Scholar 

  • Bibby DF, Gill AC, Kirby L, Farquhar CF, Bruce ME, Garson JA (2008) Application of a novel in vitro selection technique to isolate and characterise high affinity DNA aptamers binding mammalian prion proteins. J Virol Methods 151:107–115

    Article  CAS  Google Scholar 

  • Bruno JG, Phillips T, Carrillo MP, Crowell R (2009) Plastic-adherent DNA aptamer-magnetic bead and quantum dot sandwich assay for Campylobacter detection. J Fluoresc 19:427–435

    Article  CAS  Google Scholar 

  • Cerchia L, Duconge F, Pestourie C, Boulay J, Aissouni Y, Gombert K, Tavitian B, de Franciscis V, Libri D (2005) Neutralizing aptamers from whole-cell SELEX inhibit the RET receptor tyrosine kinase. PLoS Biol 3:e123

    Article  Google Scholar 

  • Chen F, Zhou J, Luo F, Mohammed AB, Zhang XL (2007) Aptamer from whole-bacterium SELEX as new therapeutic reagent against virulent Mycobacterium tuberculosis. Biochem Biophys Res Commun 357:743–748

    Article  CAS  Google Scholar 

  • Davis KA, Lin Y, Abrams B, Jayasena SD (1998) Staining of cell surface human CD4 with 2′-F-pyrimidine-containing RNA aptamers for flow cytometry. Nucleic Acids Res 26:3915–3924

    Article  CAS  Google Scholar 

  • Drolet DW, Moon-McDermott L, Romig TS (1996) An enzyme-linked oligonucleotide assay. Nat Biotechnol 14:1021–1025

    Article  CAS  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  Google Scholar 

  • Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K, Gustafsdottir SM, Ostman A, Landegren U (2002) Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol 20:473–477

    Article  CAS  Google Scholar 

  • Friedman CR, Hoekstra RM, Samuel M, Marcus R, Bender J, Shiferaw B, Reddy S, Ahuja SD, Helfrick DL, Hardnett F, Carter M, Anderson B, Tauxe RV (2004) Risk factors for sporadic Campylobacter infection in the United States: a case-control study in FoodNet sites. Clin Infect Dis 38(Suppl 3):S285–S296

    Article  Google Scholar 

  • Gillespie IA, O'Brien SJ, Frost JA, Adak GK, Horby P, Swan AV, Painter MJ, Neal KR (2002) A case-case comparison of Campylobacter coli and Campylobacter jejuni infection: a tool for generating hypotheses. Emerg Infect Dis 8:937–942

    Google Scholar 

  • Griffiths PL (1993) Morphological changes of Campylobacter jejuni growing in liquid culture. Lett Appl Microbiol 17:152–155

    Article  CAS  Google Scholar 

  • Herr JK, Smith JE, Medley CD, Shangguan D, Tan W (2006) Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal Chem 78:2918–2924

    Article  CAS  Google Scholar 

  • Homann M, Goringer HU (1999) Combinatorial selection of high affinity RNA ligands to live African trypanosomes. Nucleic Acids Res 27:2006–2014

    Article  CAS  Google Scholar 

  • Humphrey T, O'Brien S, Madsen M (2007) Campylobacters as zoonotic pathogens: a food production perspective. Int J Food Microbiol 117:237–257

    Article  Google Scholar 

  • Jensen AN, Andersen MT, Dalsgaard A, Baggesen DL, Nielsen EM (2005) Development of real-time PCR and hybridization methods for detection and identification of thermophilic Campylobacter spp. in pig faecal samples. J Appl Microbiol 99:292–300

    Article  CAS  Google Scholar 

  • Johansen HK, Norgaard A, Andersen LP, Jensen P, Nielsen H, Hoiby N (1995) Cross-reactive antigens shared by Pseudomonas aeruginosa, Helicobacter pylori, Campylobacter jejuni, and Haemophilus influenzae may cause false-positive titers of antibody to H. pylori. Clin Diagn Lab Immunol 2:149–155

    CAS  Google Scholar 

  • Joshi R, Janagama H, Dwivedi HP, Senthil Kumar TM, Jaykus LA, Schefers J, Sreevatsan S (2009) Selection, characterization, and application of DNA aptamers for the capture and detection of Salmonella enterica serovars. Mol Cell Probes 23:20–28

    Article  CAS  Google Scholar 

  • LaGier MJ, Joseph LA, Passaretti TV, Musser KA, Cirino NM (2004) A real-time multiplexed PCR assay for rapid detection and differentiation of Campylobacter jejuni and Campylobacter coli. Mol Cell Probes 18:275–282

    Article  CAS  Google Scholar 

  • Lamoureux M, MacKay A, Messier S, Fliss I, Blais BW, Holley RA, Simard RE (1997) Detection of Campylobacter jejuni in food and poultry viscera using immunomagnetic separation and microtitre hybridization. J Appl Microbiol 83:641–651

    Article  CAS  Google Scholar 

  • Li N, Wang Y, Pothukuchy A, Syrett A, Husain N, Gopalakrisha S, Kosaraju P, Ellington AD (2008) Aptamers that recognize drug-resistant HIV-1 reverse transcriptase. Nucleic Acids Res 36:6739–6751

    Article  CAS  Google Scholar 

  • Liss M, Petersen B, Wolf H, Prohaska E (2002) An aptamer-based quartz crystal protein biosensor. Anal Chem 74:4488–4495

    Article  CAS  Google Scholar 

  • Lorger M, Engstler M, Homann M, Goringer HU (2003) Targeting the variable surface of African trypanosomes with variant surface glycoprotein-specific, serum-stable RNA aptamers. Eukaryot Cell 2:84–94

    Article  CAS  Google Scholar 

  • Mallikaratchy P, Tang Z, Kwame S, Meng L, Shangguan D, Tan W (2007) Aptamer directly evolved from live cells recognizes membrane bound immunoglobin heavy mu chain in Burkitt's lymphoma cells. Mol Cell Proteomics 6:230–238

    Google Scholar 

  • Marshall SM, Melito PL, Woodward DL, Johnson WM, Rodgers FG, Mulvey MR (1999) Rapid identification of Campylobacter, Arcobacter, and Helicobacter isolates by PCR-restriction fragment length polymorphism analysis of the 16 S rRNA gene. J Clin Microbiol 37:4158–4160

    CAS  Google Scholar 

  • Moreno Y, Botella S, Alonso JL, Ferrus MA, Hernandez M, Hernandez J (2003) Specific detection of Arcobacter and Campylobacter strains in water and sewage by PCR and fluorescent in situ hybridization. Appl Environ Microbiol 69:1181–1186

    Article  CAS  Google Scholar 

  • Nachamkin I (2002) Chronic effects of Campylobacter infection. Microbes Infect 4:399–403

    Article  Google Scholar 

  • Ng LK, Sherburne R, Taylor DE, Stiles ME (1985) Morphological forms and viability of Campylobacter species studied by electron microscopy. J Bacteriol 164:338–343

    CAS  Google Scholar 

  • Pan W, Craven RC, Qiu Q, Wilson CB, Wills JW, Golovine S, Wang JF (1995) Isolation of virus-neutralizing RNAs from a large pool of random sequences. Proc Natl Acad Sci USA 92:11509–11513

    Article  CAS  Google Scholar 

  • Pestourie C, Cerchia L, Gombert K, Aissouni Y, Boulay J, De Franciscis V, Libri D, Tavitian B, Duconge F (2006) Comparison of different strategies to select aptamers against a transmembrane protein target. Oligonucleotides 16:323–335

    Article  CAS  Google Scholar 

  • Shamah SM, Healy JM, Cload ST (2008) Complex target SELEX. Acc Chem Res 41:130–138

    Article  CAS  Google Scholar 

  • Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, Sefah K, Yang CJ, Tan W (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci USA 103:11838–11843

    Article  CAS  Google Scholar 

  • Sharma VK (2006) Real-time reverse transcription-multiplex PCR for simultaneous and specific detection of rfbE and eae genes of Escherichia coli O157:H7. Mol Cell Probes 20:298–306

    CAS  Google Scholar 

  • Tombelli S, Minunni M, Mascini M (2005) Analytical applications of aptamers. Biosens Bioelectron 20:2424–2434

    Article  CAS  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  Google Scholar 

  • Ulrich H, Magdesian MH, Alves MJ, Colli W (2002) In vitro selection of RNA aptamers that bind to cell adhesion receptors of Trypanosoma cruzi and inhibit cell invasion. J Biol Chem 277:20756–20762

    Article  CAS  Google Scholar 

  • Vivekananda J, Kiel JL (2006) Anti-Francisella tularensis DNA aptamers detect tularemia antigen from different subspecies by Aptamer-Linked Immobilized Sorbent Assay. Lab Invest 86:610–618

    CAS  Google Scholar 

  • Wang C, Zhang M, Yang G, Zhang D, Ding H, Wang H, Fan M, Shen B, Shao N (2003) Single-stranded DNA aptamers that bind differentiated but not parental cells: subtractive systematic evolution of ligands by exponential enrichment. J Biotechnol 102:15–22

    Article  CAS  Google Scholar 

  • Yang X, Li X, Prow TW, Reece LM, Bassett SE, Luxon BA, Herzog NK, Shope AJ, RE LJF, Gorenstein DG (2003) Immunofluorescence assay and flow-cytometry selection of bead-bound aptamers. Nucleic Acids Res 31:e54

    Article  Google Scholar 

  • Yu LS, Uknalis J, Tu SI (2001) Immunomagnetic separation methods for the isolation of Campylobacter jejuni from ground poultry meats. J Immunol Methods 256:11–18

    Article  CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Food Safety and Research Response Network (FSRRN) funded through United State Department of Agriculture (USDA), Cooperative State Research, Education and Extension Service (CSREES), National Research Initiative, Competitive Grants Program, Epidemiological Approaches to Food Safety, Project grant number 2005-35212-15287. The work represents manuscript FSR10-13 of the Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University.The use of trade names in this publication does not imply endorsement by the NorthCarolina Agricultural Research Service or criticism of similar ones not mentioned.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari P. Dwivedi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dwivedi, H.P., Smiley, R.D. & Jaykus, LA. Selection and characterization of DNA aptamers with binding selectivity to Campylobacter jejuni using whole-cell SELEX. Appl Microbiol Biotechnol 87, 2323–2334 (2010). https://doi.org/10.1007/s00253-010-2728-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2728-7

Keywords

Navigation