Skip to main content
Log in

Fluorescence Assay Based on Aptamer-Quantum Dot Binding to Bacillus thuringiensis Spores

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A novel assay was developed for the detection of Bacillus thuringiensis (BT) spores. The assay is based on the fluorescence observed after binding an aptamer-quantum dot conjugate to BT spores. The in vitro selection and amplification technique called SELEX (Systematic Evolution of Ligands by EXponential enrichment) was used in order to identify the DNA aptamer sequence specific for BT. The 60 base aptamer was then coupled to fluorescent zinc sulfide-capped, cadmium selenide quantum dots (QD). The assay is semi-quantitative, specific and can detect BT at concentrations of about 1,000 colony forming units/ml.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    Article  CAS  Google Scholar 

  2. Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46

    Article  PubMed  CAS  Google Scholar 

  3. Lidke DS, Arndt-Jovin DJ (2004) Imaging takes a quantum leap. Physiology 19:322–324

    Article  PubMed  CAS  Google Scholar 

  4. Nirmal M, Brus LE (1999) Luminescence photophysics in semiconductor nanocrystals. Acc Chem Res 32:407–414

    Article  CAS  Google Scholar 

  5. Bruches M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semi- conductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  Google Scholar 

  6. Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  PubMed  CAS  Google Scholar 

  7. Han M, Gao X, Su JZ, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19:631–635

    Article  PubMed  CAS  Google Scholar 

  8. Rosenthal SJ (2001) Bar coding biomolecules with fluorescent nanocrystals. Nat Biotechnol 19:621–622

    Article  PubMed  CAS  Google Scholar 

  9. Hoile R, Yuen M, James G, Gilbert GL (2006) Evaluation of the rapid analyte measurement platform (RAMP) for the detection of Bacillus anthracis at a crime scene. Forensic Sci Int, Oct 16

  10. Tuerk C, Gold L (1990) Systemic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  PubMed  CAS  Google Scholar 

  11. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  PubMed  CAS  Google Scholar 

  12. Brody NE, Gold L (2000) Aptamers as therapeutic and diagnostic agents. Rev Mol Biotechnol 74:5–13

    Article  CAS  Google Scholar 

  13. Nutiu R, Yingfu L (2003) Structure-switching signaling aptamers. J Am Chem Soc 125:4771–4778

    Article  PubMed  CAS  Google Scholar 

  14. Proske D, Blank M, Buhmann R, Resch A (2005) Aptamers-basic research, drug development, and clinical applications. Appl Microbiol Biotechnol 69:367–374

    Article  PubMed  CAS  Google Scholar 

  15. Rimmele M (2003) Nucleic acid aptamers as tools and drugs. Chem Bio Chem 4:963–971

    PubMed  CAS  Google Scholar 

  16. Dwarakanath S, Bruno JG, Shastry A, Phillips T, John A, Kumar A, Stephenson LD (2004) Quantum dot-antibody and aptamer conjugates shift fluorescence upon binding bacteria. Biochem Biophys Res Comm 325:739–743

    Article  PubMed  CAS  Google Scholar 

  17. Kloepfer JA, Mielke RE, Wong MS, Nealson KH, Stucky G, Nadeau JL (2003) Quantum dots as strain- and metabolism-specific microbiological labels. Appl Environ Microbiol 69:4205–4213

    Article  PubMed  CAS  Google Scholar 

  18. Bruno JG, Kiel JL (1999) In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection. Biosensors Bioelectronics 14:457–464

    Article  PubMed  CAS  Google Scholar 

  19. Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45:1628–1650

    PubMed  CAS  Google Scholar 

  20. Drobniewski FA (1994) A review: the safety of Bacillus species as insect control agents. J Appl Bacteriol 76:101–109

    PubMed  CAS  Google Scholar 

  21. Helgason E, Okstad O, Caugant D, et al. (2000) Bacillus anthracis, Bacillus cereus and Bacillus thuringiensis-one species on the basis of genetic evidence. Appl Environ Microbiol 66:2627–2630

    Article  PubMed  CAS  Google Scholar 

  22. Lambert B, Peferoen M (1992) Insecticidal promise of Bt. BioScience 42:112–122

    Article  Google Scholar 

  23. Ruud A, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genetics 17:193–199

    Article  Google Scholar 

  24. Bruno JG, Ulvick SJ, Uzzell GL, Tabb JS, Valdes ER, Batt CA (2001) Novel immuno-FRET assay method for Bacillus spores and E. coli O157:H7. Biochem Biophys Res Comm 287:875–880

    Article  PubMed  CAS  Google Scholar 

  25. Bennet RW, Harmon SM (1990) Bacillus cereus food poisoning. Laboratory diagnosis of infectious disesases: principles and practice. Vol. 1: Bacterial, mycotic and parasitic diseases. Springer-Verlag, New York.

    Google Scholar 

  26. Siegel JP (2001). The mammalian safety of Bacillus thuringiensis-based insecticides. J Invertebrate Pathol 77:13–21

    Article  CAS  Google Scholar 

  27. Swadener C (1994) Bacillus thuringiensis. J Pesticide Reform 14:13–20

    Google Scholar 

  28. Bruno JG, Kiel JL (2002) Use of magnetic beads in selection and detection of biotoxin aptamers by ECL and enzymatic methods. BioTechniques 32:178–183

    PubMed  CAS  Google Scholar 

  29. Sheng Z, Brooks A, Carlson K, Filner P (1989) Separation of protein crystals from spores of Bacillus thuringiensis by Ludox gradient centrifugation. Appl Environ Microbiol 55:1279–1281

    Google Scholar 

  30. Zhao X, Hilliard LR, Mechery SJ, Wang Y, Bagwe RP, Jin S, Tan W (2004) A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc Nat Acad Sci 101:15027–15032

    Article  PubMed  CAS  Google Scholar 

  31. Mann D, Reinemann C, Stoltenburg R, Strehlitz B (2005) In vitro selection of DNA aptamers binding ethanolamine. Biochem Biophys Res Comm 338:1928–1934

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the U.S. Air Force Research Laboratory, Brooks City-Base, San Antonio, TX, for partial laboratory support. We would also like to acknowledge the Department of Defense (U.S. Army Contract No. DACA42-03-C-0063) for financial support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter E. Rudzinski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikanovic, M., Rudzinski, W.E., Bruno, J.G. et al. Fluorescence Assay Based on Aptamer-Quantum Dot Binding to Bacillus thuringiensis Spores. J Fluoresc 17, 193–199 (2007). https://doi.org/10.1007/s10895-007-0158-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-007-0158-4

Keywords

Navigation