Skip to main content

Advertisement

Log in

Utility of aptamer-fluorescence in situ hybridization for rapid detection of Pseudomonas aeruginosa

  • Brief Report
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Rolston KV, Bodey GP (1992) Pseudomonas aeruginosa infection in cancer patients. Cancer Invest 10(1):43–59

    Article  CAS  PubMed  Google Scholar 

  2. Hashimoto M, Sugawara Y, Tamura S, Kaneko J, Matsui Y, Kokudo N, Makuuchi M (2009) Pseudomonas aeruginosa infection after living-donor liver transplantation in adults. Transpl Infect Dis 11(1):11–19

    Article  CAS  PubMed  Google Scholar 

  3. McManus AT (1989) Pseudomonas aeruginosa: a controlled burn pathogen? Antibiot Chemother 42:103–108

    CAS  PubMed  Google Scholar 

  4. Murray TS, Egan M, Kazmierczak BI (2007) Pseudomonas aeruginosa chronic colonization in cystic fibrosis patients. Curr Opin Pediatr 19(1):83–88

    Article  PubMed  Google Scholar 

  5. Weisner AM, Chart H, Bush A, Davies JC, Pitt TL (2007) Detection of antibodies to Pseudomonas aeruginosa in serum and oral fluid from patients with cystic fibrosis. J Med Microbiol 56(Pt 5):670–674

    Article  CAS  PubMed  Google Scholar 

  6. Xu J, Moore JE, Murphy PG, Millar BC, Elborn JS (2004) Early detection of Pseudomonas aeruginosa—comparison of conventional versus molecular (PCR) detection directly from adult patients with cystic fibrosis (CF). Ann Clin Microbiol Antimicrob 3:21

    Article  CAS  PubMed  Google Scholar 

  7. Bottari B, Ercolini D, Gatti M, Neviani E (2006) Application of FISH technology for microbiological analysis: current state and prospects. Appl Microbiol Biotechnol 73(3):485–494

    Article  CAS  PubMed  Google Scholar 

  8. Pfaller MA, Barrett M, Koontz FP, Wenzel RP, Cunningham MD, Rollins N, Darveau RP (1989) Clinical evaluation of a direct fluorescent monoclonal antibody test for detection of Pseudomonas aeruginosa in blood cultures. J Clin Microbiol 27(3):558–560

    CAS  PubMed  Google Scholar 

  9. Hogardt M, Trebesius K, Geiger AM, Hornef M, Rosenecker J, Heesemann J (2000) Specific and rapid detection by fluorescent in situ hybridization of bacteria in clinical samples obtained from cystic fibrosis patients. J Clin Microbiol 38(2):818–825

    CAS  PubMed  Google Scholar 

  10. Peleg AY, Tilahun Y, Fiandaca MJ, D'Agata EM, Venkataraman L, Moellering RC Jr, Eliopoulos GM (2009) Utility of peptide nucleic acid fluorescence in situ hybridization for rapid detection of Acinetobacter spp. and Pseudomonas aeruginosa. J Clin Microbiol 47(3):830–832

    Article  CAS  PubMed  Google Scholar 

  11. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822

    Article  CAS  PubMed  Google Scholar 

  12. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510

    Article  CAS  PubMed  Google Scholar 

  13. Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355(6360):564–566

    Article  CAS  PubMed  Google Scholar 

  14. Ellington AD, Szostak JW (1992) Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355(6363):850–852

    Article  CAS  PubMed  Google Scholar 

  15. Stoltenburg R, Reinemann C, Strehlitz B (2007) SELEX–a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24(4):381–403

    Article  CAS  PubMed  Google Scholar 

  16. Schmidt KS, Borkowski S, Kurreck J, Stephens AW, Bald R, Hecht M, Friebe M, Dinkelborg L, Erdmann VA (2004) Application of locked nucleic acids to improve aptamer in vivo stability and targeting function. Nucleic Acids Res 32(19):5757–5765

    Article  CAS  PubMed  Google Scholar 

  17. Bruno JG, Kiel JL (1999) In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection. Biosens Bioelectron 14(5):457–464

    Article  CAS  PubMed  Google Scholar 

  18. Ikanovic M, Rudzinski WE, Bruno JG, Allman A, Carrillo MP, Dwarakanath S, Bhahdigadi S, Rao P, Kiel JL, Andrews CJ (2007) Fluorescence assay based on aptamer-quantum dot binding to Bacillus thuringiensis spores. J Fluoresc 17(2):193–199

    Article  CAS  PubMed  Google Scholar 

  19. So HM, Park DW, Jeon EK, Kim YH, Kim BS, Lee CK, Choi SY, Kim SC, Chang H, Lee JO (2008) Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors. Small 4(2):197–201

    Article  CAS  PubMed  Google Scholar 

  20. Shangguan D, Cao Z, Meng L, Mallikaratchy P, Sefah K, Wang H, Li Y, Tan W (2008) Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J Proteome Res 7(5):2133–2139

    Article  CAS  PubMed  Google Scholar 

  21. Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, Sefah K, Yang CJ, Tan W (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci USA 103(32):11838–11843

    Article  CAS  PubMed  Google Scholar 

  22. Torres-Chavolla E, Alocilja EC (2009) Aptasensors for detection of microbial and viral pathogens. Biosens Bioelectron 24(11):3175–3182

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by Key Program (No. 06G038) from the Military Medical Science and Technique Foundation during the 11th Five-Year Plan Period and the Natural Science Foundation of Fujian Province (No. 2010J05080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X.-P. Lan.

Additional information

Kai-Yu Wang and Yan-Li Zeng contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, KY., Zeng, YL., Yang, XY. et al. Utility of aptamer-fluorescence in situ hybridization for rapid detection of Pseudomonas aeruginosa . Eur J Clin Microbiol Infect Dis 30, 273–278 (2011). https://doi.org/10.1007/s10096-010-1074-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-010-1074-0

Keywords

Navigation