Skip to main content

Advertisement

Log in

Ecobiotechnological Strategy to Enhance Efficiency of Bioconversion of Wastes into Hydrogen and Methane

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Vegetable wastes (VW) and food wastes (FW) are generated in large quantities by municipal markets, restaurants and hotels. Waste slurries (250 ml) in 300 ml BOD bottles, containing 3, 5 and 7 % total solids (TS) were hydrolyzed with bacterial mixtures composed of: Bacillus, Acinetobacter, Exiguobacterium, Pseudomonas, Stenotrophomonas and Sphingobacterium species. Each of these bacteria had high activities for the hydrolytic enzymes: amylase, protease and lipase. Hydrolysate of biowaste slurries were subjected to defined mixture of H2 producers and culture enriched for methanogens. The impact of hydrolysis of VW and FW was observed as 2.6- and 2.8-fold enhancement in H2 yield, respectively. Direct biomethanation of hydrolysates of VW and FW resulted in 3.0- and 1.15-fold improvement in CH4 yield, respectively. A positive effect of hydrolysis was also observed with biomethanation of effluent of H2 production stage, to the extent of 1.2- and 3.5-fold with FW and VW, respectively. The effective H2 yields were 17 and 85 l/kg TS fed, whereas effective CH4 yields were 61.7 and 63.3 l/kg TS fed, from VW and FW, respectively. This ecobiotechnological strategy can help to improve the conversion efficiency of biowastes to biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalia VC (2007) Microbial treatment of domestic and industrialwastes for bioenergy production. Appl Microbiol (e-Book). National Science Digital Library NISCAIR, New Delhi, India. http://nsdl.niscair.res.in/bitstream/123456789/650/1/DomesticWaste.pdf

  2. Kalia VC, Purohit HJ (2008) Microbial diversity and genomics in aid of bioenergy. J Ind Microbiol Biotechnol 35:403–419. doi:10.1007/s10295-007-0300-y

    Article  CAS  PubMed  Google Scholar 

  3. Kumar P, Patel SKS, Lee JK, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561. doi:10.1016/j.biotechadv.2013.08.007

    Article  CAS  PubMed  Google Scholar 

  4. Bouallagui H, Touhami Y, Cheikh RB, Hamdi M (2005) Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochem 40:989–995. doi:10.1016/j.procbio.2004.03.007

    Article  CAS  Google Scholar 

  5. Kalia VC, Sonakya V, Raizada N (2000) Anaerobic digestion of banana stem waste. Bioresour Technol 73:191–193. doi:10.1016/S0960-8524(99)00172-8

    Article  CAS  Google Scholar 

  6. Kalia VC, Jain SR, Kumar A, Joshi AP (1994) Fermentation of biowaste to H2 by Bacillus licheniformis. World J Microbiol Biotechnol 10:224–227. doi:10.1007/BF00360893

    Article  CAS  PubMed  Google Scholar 

  7. Archer DB, Thompson LA (1987) Energy production through the treatment of wastes by micro-organisms. J Appl Bacteriol 63:59s–70s. doi:10.1111/j.1365-2672.1987.tb03612.x

    Article  Google Scholar 

  8. Chu CF, Xu KQ, Li YY, Inamori Y (2012) Hydrogen and methane potential based on the nature of food waste materials in a two-stage thermophilic fermentation process. Int J Hydrogen Energy 37:10611–10618. doi:10.1016/j.ijhydene.2012.04.048

    Article  CAS  Google Scholar 

  9. Chuang YS, Lay CH, Sen B, Chen CC, Gopalakrishnan K, Wu JH, Lin CS, Lin CY (2011) Biohydrogen and biomethane from water hyacinth (Eichhornia crassipes) fermentation: effects of substrate concentration and incubation temperature. Int J Hydrogen Energy 36:14195–14203. doi:10.1016/j.ijhydene.2011.04.188

    Article  CAS  Google Scholar 

  10. Molino A, Nanna F, Ding Y, Bikson B, Braccio G (2013) Biomethane production by anaerobic digestion of organic waste. Fuel 103:1003–1009. doi:10.1016/j.fuel.2012.07.070

    Article  CAS  Google Scholar 

  11. Patterson T, Esteves S, Dinsdale R, Guwy A, Maddy J (2013) Life cycle assessment of biohydrogen and biomethane production and utilisation as a vehicle fuel. Bioresour Technol 131:235–245. doi:10.1016/j.biortech.2012.12.109

    Article  CAS  PubMed  Google Scholar 

  12. Premier GC, Kim JR, Massanet-Nicolau J, Kyazze G, Esteves SRR, Penumathsa BKV, Rodríguez J, Maddya J, Dinsdale RM, Guwya AJ (2013) Integration of biohydrogen, biomethane and bioelectrochemical systems. Renew Energy 49:188–192. doi:10.1016/j.renene.2012.01.035

    Article  CAS  Google Scholar 

  13. Xiao L, Deng Z, Fung KY, Ng KM (2013) Biohydrogen generation from anaerobic digestion of food waste. Int J Hydrogen Energy 38:13907–13913. doi:10.1016/j.ijhydene.2013.08.072

    Article  CAS  Google Scholar 

  14. Kumar P, Singh M, Mehariya S, Patel SKS, Lee JK, Kalia VC (2014) Ecobiotechnological approach for exploiting the abilities of Bacillus to produce co-polymer of polyhydroxyalkanoate. Ind J Microbiol 54:151–157. doi: 10.1007/s12088-014-0457-9

  15. Sonakya V, Raizada N, Kalia VC (2001) Microbial and enzymatic improvement of anaerobic digestion of waste biomass. Biotechnol Lett 23:1463–1466. doi:10.1023/A:1011664912970

    Article  CAS  Google Scholar 

  16. Patel SKS, Kumar P, Kalia VC (2012) Enhancing biological hydrogen production through complementary microbial metabolisms. Int J Hydrogen Energy 37:10590–10603. doi:10.1016/j.ijhydene.2012.04.045

    Article  CAS  Google Scholar 

  17. Patel SKS, Kalia VC (2013) Integrative biological hydrogen production: an overview. Indian J Microbiol 53:3–10. doi:10.1007/s12088-012-0287-6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Johnson K, Jiang Y, Kleerebezem R, Muyzer G, van Loosdrecht MCM (2009) Enrichment of a mixed bacterial culture with a high polyhydroxyalkanoate storage capacity. Biomacromolecules 10:670–676. doi:10.1021/bm8013796

    Article  CAS  PubMed  Google Scholar 

  19. Patel SKS, Singh M, Kumar P, Purohit HJ, Kalia VC (2012) Exploitation of defined bacterial cultures for production of hydrogen and polyhydroxybutyrate from pea-shells. Biomass Bioenergy 36:218–225. doi:10.1016/j.biombioe.2011.10.027

    Article  CAS  Google Scholar 

  20. Porwal S, Kumar T, Lal S, Rani A, Kumar S, Cheema S, Purohit HJ, Sharma R, Patel SKS, Kalia VC (2008) Hydrogen and polyhydroxybutyrate producing abilities of microbes from diverse habitats by dark fermentative process. Bioresour Technol 99:5444–5451. doi:10.1016/j.biortech.2007.11.011

    Article  CAS  PubMed  Google Scholar 

  21. Patel SKS, Purohit HJ, Kalia VC (2010) Dark fermentative hydrogen production by defined mixed microbial cultures immobilized on ligno-cellulosic waste materials. Int J Hydrogen Energy 35:10674–10681. doi:10.1016/j.ijhydene.2010.03.025

    Article  CAS  Google Scholar 

  22. Kalia VC, Kumar A, Jain SR, Joshi AP (1992) Biomethanation of plant materials. Bioresour Technol 41:209–212. doi:10.1016/0960-8524(92)90003-G

    Article  CAS  Google Scholar 

  23. Kalia VC, Joshi AP (1995) Conversion of waste biomass (pea-shells) into hydrogen and methane through anaerobic digestion. Bioresour Technol 53:165–168. doi:10.1016/0960-8524(95)00077-R

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Director of CSIR-Institute of Genomics and Integrative Biology (IGIB), Delhi, CSIR-WUM (ESC0108) and Department of Biotechnology (DBT-BT/PR-11517/BCE/08/709/2008) Government of India for providing necessary funds and facilities. PK is thankful to CSIR for granting Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasun Kumar.

Additional information

Prasun Kumar and Dinesh Chander Pant have Contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Pant, D.C., Mehariya, S. et al. Ecobiotechnological Strategy to Enhance Efficiency of Bioconversion of Wastes into Hydrogen and Methane. Indian J Microbiol 54, 262–267 (2014). https://doi.org/10.1007/s12088-014-0467-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-014-0467-7

Keywords

Navigation