Skip to main content

Advertisement

Log in

Biohythane production from organic wastes: present state of art

  • Pollution control technologies and alternate energy options
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The economy of an industrialized country is greatly dependent on fossil fuels. However, these nonrenewable sources of energy are nearing the brink of extinction. Moreover, the reliance on these fuels has led to increased levels of pollution which have caused serious adverse impacts on the environment. Hydrogen has emerged as a promising alternative since it does not produce CO2 during combustion and also has the highest calorific value. The biohythane process comprises of biohydrogen production followed by biomethanation. Biological H2 production has an edge over its chemical counterpart mainly because it is environmentally benign. Maximization of gaseous energy recovery could be achieved by integrating dark fermentative hydrogen production followed by biomethanation. Intensive research work has already been carried out on the advancement of biohydrogen production processes, such as the development of suitable microbial consortium (mesophiles or thermophiles), genetically modified microorganism, improvement of the reactor designs, use of different solid matrices for the immobilization of whole cells, and development of two-stage process for higher rate of H2 production. Scale-up studies of the dark fermentation process was successfully carried out in 20- and 800-L reactors. However, the total gaseous energy recovery for two stage process was found to be 53.6 %. From single-stage H2 production, gaseous energy recovery was only 28 %. Thus, two-stage systems not only help in improving gaseous energy recovery but also can make biohythane (mixture of H2 and CH4) concept commercially feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asakawa S (2003) Methanoculleus bourgensis, Methanoculleus olentangyi and Methanoculleus oldenburgensis are subjective synonyms. Int J Syst Evol Microbiol 53:1551–1552

    Article  CAS  Google Scholar 

  • Azbar N, Çetinkaya Dokgöz FT, Keskin T, Korkmaz KS (2009) Syed HM (2009) Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions. Int J Hydrog Energy 34:7441–7447

    Article  CAS  Google Scholar 

  • Baghchehsaree B, Nakhla G, Karamanev D, Argyrios M (2010) Fermentative hydrogen production by diverse microflora. Int J Hydrog Energy 35:5021–5027

    Article  CAS  Google Scholar 

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979a) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296

    CAS  Google Scholar 

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979b) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296

    CAS  Google Scholar 

  • Beaty PS, McInerney MJ (1989) Effects of organic acid anions on the growth and metabolism of syntrophomonas wolfei in pure culture and in defined consortia. Appl Environ Microbiol 55:977–983

    CAS  Google Scholar 

  • Benemann JR (1996) Hydrogen biotechnology: progress and prospects. Nat Biotechnol 14:1101–1103

    Article  CAS  Google Scholar 

  • Benemann JR (1997) Feasibility analysis of photobiological hydrogen production. Int J Hydrog Energy 22:979–987

    Article  CAS  Google Scholar 

  • Biavati B, Vasta M, Ferry JG (1988) Isolation and characterization of “Methanosphaera cuniculi” sp. nov. Appl Environ Microbiol 54:768–771

    CAS  Google Scholar 

  • Blackwood AC, Ledingham GA, Neish AC (1956) Dissimilation of glucose at controlled pH values by pigmented and non-pigmented strains of escherichia coli. J Bacteriol 72:497–499

    CAS  Google Scholar 

  • Bleicher K, Zellner G, Winter J (1989) Growth of methanogens on cyclopentanol/CO2 and specificity of alcohol dehydrogenase. FEMS Microbiol Lett 59:307–312

    Article  CAS  Google Scholar 

  • Boone DR, Johnson RL, Liu Y (1989) Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. Appl Environ Microbiol 55:1735–1741

    CAS  Google Scholar 

  • Bryant MP, Boone DR (1987) Emended Description of strain MST(DSM 800T), the type strain of methanosarcina barkeri. Int J Syst Bacteriol 37:169–170

    Article  Google Scholar 

  • Buitrón G, Kumar G, Martinez-Arce A, Moreno G (2014) Hydrogen and methane production via a two-stage processes (H 2-SBR+ CH 4-UASB) using tequila vinasses. Int J Hydrog Energy 39(33):19249–19255

    Article  CAS  Google Scholar 

  • Calli B (2008) Dark fermentative H2 production from xylose and lactose—effects of on-line pH control. Int J Hydrog Energy 33:522–530

    Article  CAS  Google Scholar 

  • Cao GL, Zhao L, Wang AJ, Wang ZY, Ren NQ (2014) Single-step bioconversion of lignocellulose to hydrogen using novel moderately thermophilic bacteria. Biotechnol Biofuels 7:82

    Article  CAS  Google Scholar 

  • Chen CC, Lin CY, Lin MC (2002) Acid–base enrichment enhances anaerobic hydrogen production process. Appl Microbiol Biotechnol 58:224–228

    Article  Google Scholar 

  • Cheng J, Liu Y, Lin R, Xia A, Zhou J, Cen K (2014) Cogeneration of hydrogen and methane from the pretreated biomass of algae bloom in taihu lake. Int J of Hydrog Energy 39(33):18793–18802

    Article  CAS  Google Scholar 

  • Cheong DY, Hansen CL (2006) Bacterial stress enrichment enhances anaerobic hydrogen production in cattle manure sludge. Appl Microbiol Biotechnol 72:635–643

    Article  CAS  Google Scholar 

  • Chu CF, Li YY, Xu KQ, Ebie Y, Inamori Y, Kong HN (2008) A pH-and temperature-phased two-stage process for hydrogen and methane production from food waste. Int J Hydrog Energy 33:4739–4746

    Article  CAS  Google Scholar 

  • Conrad R, Phelps TJ, Zeikus JG (1985) Gas metabolism evidence in support of the juxtaposition of hydrogen-producing and methanogenic bacteria in sewage sludge and lake sediments. Appl Environ Microbiol 50:595–601

    CAS  Google Scholar 

  • Cord-Ruwisch R, Seitz H-J, Conrad R (1988) The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch Microbiol 149:350–357

    Article  CAS  Google Scholar 

  • Das D, Verziroglu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy 6:13–28

    Article  Google Scholar 

  • Das D, Khanna N, Veziroglu TN (2008) Recent developments in biological hydrogen production processes. Chem Indus Chem Eng Q 14:57–67. doi:10.2298/CICEQ0802057D

    Article  CAS  Google Scholar 

  • Ermler U (2005) On the mechanism of methyl-coenzyme M reductase. Dalton Trans 21:3451–3458

    Article  CAS  Google Scholar 

  • Fabiano B, Perego P (2002) Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. Intl J Hydrog Energy 27:149–156

    Article  CAS  Google Scholar 

  • Fan YT, Zhang YH, Zhang SF, Hou HW, Ren BZ (2006) Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Biores Technol 97:500–505

    Article  CAS  Google Scholar 

  • Fang HH, Liu H, Zhang T (2002) Characterization of a hydrogen-producing granular sludge. Biotechnol Bioeng 78:44–52

    Article  CAS  Google Scholar 

  • Finkelstein M, McMillan JD, Davison BH, Evans B (2004) For fuels and chemicals. Appl Biochem Biotechnol 113(116):653

    Google Scholar 

  • Friedrich MW (2005) Methyl‐coenzyme M reductase genes: unique functional markers for methanogenic and anaerobic methane‐oxidizing archaea. Methods Enzymol 397:428–442

    Article  CAS  Google Scholar 

  • Grabarse W, Mahlert F, Duin EC, Goubeaud M, Shima S, Thauer RK, Lamzin V, Ermler U (2001) On the mechanism of biological methane formation: structural evidence for conformational changes in methyl-coenzyme M reductase upon substrate binding. J Mol Biol 309(1):315–330

    Article  CAS  Google Scholar 

  • Guo YC, Da Y, Bai YX, Li YH, Fan YT, Hou YW (2014) Co-producing hydrogen and methane from higher concentration of corn stalk by combining hydrogen fermentation and anaerobic digestion. Int J Hydrog Energy 39:14204–14211

    Article  CAS  Google Scholar 

  • Hawkes FR, Hussy I, Kyazze G, Dinsdale R, Hawkes DL (2007) Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int J Hydrog Energy 32:172–184

    Article  CAS  Google Scholar 

  • Hippe H, Caspari D, Fiebig K, Gottschalk G (1979) Utilization of trimethylamine and other N-methyl compounds for growth and methane formation by methanosarcina barkeri. Proc Natl Acad Sci 76:494–498

    Article  CAS  Google Scholar 

  • Hung CH, Chang YT, Chang YJ (2011) Roles of microorganisms other than Clostridium and Enterobacter in anaerobic fermentative biohydrogen production systems–a review. Bioresour Technol 102:8437–8444

    Article  CAS  Google Scholar 

  • Huser BA, Wuhrmann K, Zehnder A (1982) Methanothrix soehngenii gen. nov. sp. nov., a new acetotrophic non-hydrogen-oxidizing methane bacterium. Arch Microbiol 132:1–9

    Article  CAS  Google Scholar 

  • Intanoo P, Rangsanvigit P, Malakul P, Chavadej S (2014) Optimization of separate hydrogen and methane production from cassava wastewater using two-stage upflow anaerobic sludge blanket reactor (UASB) system under thermophilic operation. Bioresour Technol 173:256–265

    Article  CAS  Google Scholar 

  • Jo JH, Lee DS, Park JM (2008) The effects of pH on carbon material and energy balances in hydrogen-producing Clostridium tyrobutyricum JM1. Bioresour Technol 99:8485–8491

    Article  CAS  Google Scholar 

  • Jung G (2002) Hydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19. Int J Hydrog Energy 27:601–610

    Article  CAS  Google Scholar 

  • Kadar Z, de Vrije T, van Noorden GE, Budde MAW et al (2004) Yields from glucose, xylose, and paper sludge hydrolysate during hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus. Appl Biochem Biotechnol 114:497–508

    Article  Google Scholar 

  • Kalia VC, Purohit HJ (2008) Microbial diversity and genomics in aid of bioenergy. J Ind Microbiol Biotechnol 35:403–419

    Article  CAS  Google Scholar 

  • Keskin T, Giusti L, Azbar N (2012) Continuous biohydrogen production in immobilized biofilm system versus suspended cell culture. Int J Hydrog Energy 37:1418–1424

    Article  CAS  Google Scholar 

  • Khanal SK, Chen WH, Sung LLS (2004) Biological hydrogen production: effects of pH and intermediate products. Int J Hydrog Energy 29:1123–1131

    CAS  Google Scholar 

  • Khanna N, Das D (2013) Biohydrogen production by dark fermentation. Wiley Interdisciplinary Rev Energ Environ 2:401–421

    Article  CAS  Google Scholar 

  • Kim SH, Han SK, Shin HS (2004) Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. Int J Hydrog Energy 29:1607–1616

    Article  CAS  Google Scholar 

  • King PW, Posewitz MC, Ghirardi ML, Seibert M (2006) Functional studies of [FeFe] hydrogenase maturation in an escherichia coli biosynthetic system. J Bacteriol 188:2163–2172

    Article  CAS  Google Scholar 

  • Knappe J, Sawers G (1990) A radical-chemical route to acetyl-CoA: the anaerobically induced pyruvate formate-lyase system of escherichia coli. FEMS Microbiol Lett 75:383–98

    Article  CAS  Google Scholar 

  • Kongjan P, O-Thong S, Angelidaki I (2011) Performance and microbial community analysis of two-stage process with extreme thermophilic hydrogen and thermophilic methane production from hydrolysate in UASB reactors. Bioresour Technol 102:4028–4035

    Article  CAS  Google Scholar 

  • Kongjan P, Jariyaboon R, Sompong O (2014) Anaerobic digestion of skim latex serum (SLS) for hydrogen and methane production using a two-stage process in a series of up-flow anaerobic sludge blanket (UASB) reactor. Int J Hydrog Energy 39(33):19343–19348

    Article  CAS  Google Scholar 

  • Konig H, Stetter KO (1982) Isolation and characterization of methanolobus tindarius; sp. nov., a coccoid methanogen growing only on methanol and methylamines. Zbl Bakt Hyg AbtOrig C3:478–490

    Google Scholar 

  • Korres NE, Singh A, Nizami AS, Murphy JD (2010) Is grass biomethane a sustainable transport biofuel? Biofuel Bioprod Biorefining 4:310–325

    Article  CAS  Google Scholar 

  • Kotay SM, Das D (2007) Microbial hydrogen production with bacillus coagulans IIT-BT S1 isolated from anaerobic sewage sludge. Bioresour Technol 98:1183–1190

    Article  CAS  Google Scholar 

  • Kristjansson JK, Schonheit P, Thauer RK (1982) Different Ks values for hydrogen of methanogenic bacteria and sulfate reducing bacteria: an explanation for the apparent inhibition of methanogenesis by sulfate. Arch Microbiol 131:278–282

    Article  CAS  Google Scholar 

  • Kumar N, Das D (2000) Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochem 35:589–593

    Article  CAS  Google Scholar 

  • Kurr M, Huber R, Konig H, Jannasch HW, Fricke H, Trincone A, Kristjansson JK, Stetter KO (1991) Methanopyrus kandleri, gen. And sp. nov. Represents a novel group of hyperthermophilic methanogens, growing at 110 °C. Arch Microbiol 156:239–247

    Article  CAS  Google Scholar 

  • Lateef SA, Beneragama N, Yamashiro T, Iwasaki M, Umetsu K (2014) Batch anaerobic co-digestion of cow manure and waste milk in two-stage process for hydrogen and methane productions. Bioprocess Biosyst Eng 37(3):355–363

    Article  CAS  Google Scholar 

  • Lauerer G, Kristjansson JK, Langworthy TA, König H, Stetter KO (1986) Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97°C. Syst Appl Microbiol 8:100–105

    Article  Google Scholar 

  • Lay JJ, Fan KS, Chang J, Ku CH (2004) Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge. Int J Hydrog Energy 28:1361–1367

    Article  CAS  Google Scholar 

  • Lee YE, Jain MK, Lee C, Zeikus JG (1993) Taxonomic distinction of saccharolytic thermophilic anaerobes: description of thermoanaerobacterium xylanolyticum gen. nov., sp. nov., and thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; reclassification of Thermoanaerobium brockii, Clostridium. Int J Syst Bacteriol 43:41–51

    Article  Google Scholar 

  • Lee KS, Lo YC, Lin PJ, Chang JS (2006) Improving biohydrogen production in a carrier-induced granular sludge bed by altering physical configuration and agitation pattern of the bioreactor. Int J Hydrog Energy 31:1648–1657

    Article  CAS  Google Scholar 

  • Leonhartsberger S, Korsa I, Bock I (2002) The molecular biology of formate metabolism in enterobacteria. J Mol Microbiol Biotechnol 4(3):269–276

    CAS  Google Scholar 

  • Levin D, Islam R, Cicek N, Sparling R (2006) Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. Int J Hydrog Energy 31:1496–1503

    Article  CAS  Google Scholar 

  • Lin CY, Lay CH (2005) A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge microflora. Int J Hydrog Energy 30:285–292

    Article  CAS  Google Scholar 

  • Lovley DR, Phillips EJ (1987) Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments. Appl Environ Microbiol 53:2636–2641

    CAS  Google Scholar 

  • Luo G, Xie L, Zou Z, Wang W, Zhou Q, Shim H (2010) Anaerobic treatment of cassava stillage for hydrogen and methane production in continuously stirred tank reactor (CSTR) under high organic loading rate OLR. Int J Hydrog Energy 35:11733–11737

    Article  CAS  Google Scholar 

  • Maeda T, Sanchez-Torres V, Wood TK (2007) Escherichia coli hydrogenase 3 is a reversible enzyme possessing hydrogen uptake and synthesis activities. Appl Microbiol Biotechnol 76:1035–1042

    Article  CAS  Google Scholar 

  • Mariakakis I, Meyer C, Steinmetz H (2012) Fermentative Hydrogen Production by Molasses; Effect of Hydraulic Retention Time, Organic Loading Rate and Microbial Dynamics. in: Manic, D., (Ed.), Hydrogen Energy - Challenges and Perspectives, In Tech, ISBN 978-953-51-0812-2

  • McInerney MJ, Bryant MP, Hespell RB, Costerton JW (1981) Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl Environ Microbiol 41:1029–1039

    CAS  Google Scholar 

  • Menon NK, Robbins J, Wendt JC, Shanmugam KT, Przybyla AE (1991) Mutational analysis and characterization of the escherichia coli hya operon, which encodes [NiFe] hydrogenase1. J Bacteriol 173:4851–4861

    CAS  Google Scholar 

  • Miller TL, Wolin MJ (1985) Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch Microbiol 141:116–122

    Article  CAS  Google Scholar 

  • Miyake M, Sekine M, Vasilieva LG, Nakada E, Wakayama T, Asada Y, Miyake J ( 1998) Improvement of bacterial light-dependent hydrogen production by altering the photosynthetic pigment ratio, in: Zaborsky, O.R., Benemann, J.R., Matsunaga, T., Miyake, J., Pietro, A.S. (Eds.), BioHydrogen. Springer US, pp. 81–6

  • Mizuno O, Dinsdale R, Hawkes FR, Hawkes DL, Noike T (2000) Enhancement of hydrogen production from glucose by nitrogen gas sparging. Biores Technol 73:59–65

    Article  CAS  Google Scholar 

  • Mohan SV, Babu L, Sarma PN (2007) Anaerobic biohydrogen production from dairy wastewater treatment in sequencing batch reactor (AnSBR): effect of organic loading rate. Enzyme Microb Technol 41(4):506–515

    Article  CAS  Google Scholar 

  • Mohan SV, Agarwal L, Mohanakrishna G, Srikanth S, Kapley A, Purohit HJ, Sarma PN (2011) Firmicutes with iron dependent hydrogenase drive hydrogen production in anaerobic bioreactor using distillery wastewater. Int J Hydrog Energy 36:8234–8242

    Article  CAS  Google Scholar 

  • Moreno F, Muñoz M, Arroyo J, Magén O, Monné C, Suelves I (2012) Efficiency and emissions in a vehicle spark ignition engine fueled with hydrogen and methane blends. Int J Hydrog Energy 37:11495–11503

    Article  CAS  Google Scholar 

  • Mu Y, Yu HQ, Wang G (2007) Evaluation of three methods for enriching hydrogen producing cultures from anaerobic sludge. Enzyme Microb Technol 40:947–953

    Article  CAS  Google Scholar 

  • Nandi R, Sengupta S (1998) Microbial production of hydrogen: an overview. Crit Rev Microbiol 24:61–84

    Article  CAS  Google Scholar 

  • Nkemka VN, Gilroyed B, Yanke J, Gruninger R, Vedres D, McAllister T, Hao X (2015) Bioaugmentation with an anaerobic fungus in a two-stage process for biohydrogen and biogas production using corn silage and cattail. Bioresour Technol. doi:10.1016/j.biortech.2015.02.100

    Google Scholar 

  • Noike T, Mizuno O (2000) Hydrogen fermentation of organic municipal wastes. Water Sci Technol 42:155–162

    CAS  Google Scholar 

  • Orhon D, Gorgun E, Germirli F, Artan N (1993) Biological treatability of dairy wastewaters. Water Res 27:625–33

    Article  CAS  Google Scholar 

  • O-Thong S, Mamimin C, Prasertsan P (2009) Effect of temperature and initial pH on biohydrogen production from palm oil mill effluent: long-term evaluation and microbial community analysis. Electron J Biotechnol 14(5):1–12

    Google Scholar 

  • Pandu K, Joseph S (2012) Comparisons and limitations of biohydrogen production processes: a review. Int J Adv Eng Technol 2:342–356

    Google Scholar 

  • Pant D, Adholeya A (2007) Biological approaches for treatment of distillery wastewater: a review. Bioresour Technol 98:2321–2334

    Article  CAS  Google Scholar 

  • Penfold DW, Sargent F, Macaskie LE (2006) Inactivation of the Escherichia coli K-12 twin-arginine translocation system promotes increased hydrogen production. FEMS Microbiol Lett 262:135–137

    Article  CAS  Google Scholar 

  • Platen H, Schink B (1987) Methanogenic degradation of acetone by an enrichment culture. Arch Microbiol 149:136–141

    Article  CAS  Google Scholar 

  • Rainey FA, Donnison AM, Janssen PH, Saul D et al (1994) Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov: an obligate anaerobic, extremely thermophilic, cellulolytic bacterium. FEMS Microbiol Lett 120:263–266

    Article  CAS  Google Scholar 

  • Raskin L, Stromley JM, Rittmann BE, Stahl DA (1994) Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60:1232–1240

    CAS  Google Scholar 

  • Rattanapan A, Limtong S, Phisalaphong M (2011) Ethanol production by repeated batch and continuous fermentations of blackstrap molasses using immobilized yeast cells on thin-shell silk cocoons. Appl Energy 88(12):4400–4404

    Article  CAS  Google Scholar 

  • Robinson JA, Tiedje JM (1982) Kinetics of hydrogen consumption by rumen fluid, anaerobic digestor sludge, and sediment. Appl Environ Microbiol 44:1374–1384

    CAS  Google Scholar 

  • Robinson JA, Tiedje JM (1984a) Competition between sulfate-reducing and methanogenic bacteria for H2 under resting and growing conditions. Arch Microbiol 137:26–32

    Article  CAS  Google Scholar 

  • Robinson JA, Tiedje JM (1984b) Competition between sulfate-reducing and methanogenic bacteria for H2 under resting and growing conditions. Arch Microbiol 137:26–32

    Article  CAS  Google Scholar 

  • Rouviere PE, Wolfe RS (1988) Novel biochemistry of methanogenesis. J Biol Chem 263:7913–7916

    CAS  Google Scholar 

  • Roy S, Ghosh S, Das D (2012) Improvement of hydrogen production with thermophilic mixed culture from rice spent wash of distillery industry. Int J Hydrog Energy 37:15867–15874

    Article  CAS  Google Scholar 

  • Roy S, Vishnuvardhan M, Das D (2014) Continuous hydrogen production in packed bed reactor. Appl Energy 136:51–58

    Article  CAS  Google Scholar 

  • Shi XY, Jin DW, Sun QY, Li WW (2010) Optimization of conditions for hydrogen production from brewery wastewater by anaerobic sludge using desirability function approach. Renew Energy 35(7):1493–1498

    Article  CAS  Google Scholar 

  • Soetaert W, Vandamme EJ (2009) Biofuels. John Wiley & Sons Ltd., Great Britain, pp 1–8

    Book  Google Scholar 

  • Song ZX, Li XH, Li WW, Bai YX, Fan YT, Hou HW (2014) Direct bioconversion of raw corn stalk to hydrogen by a new strain Clostridium sp. FS3. Bioresour Technol 157:91–97

    Article  CAS  Google Scholar 

  • Sparling R, Risbey D, Poggi-Varaldo HM (1997) Hydrogen production from inhibited anaerobic composters. Int J Hydrog Energy 22:563–566

    Article  CAS  Google Scholar 

  • Sprott GD, Jarrell KF, Shaw KM, Knowles R (1982) Acetylene as an inhibitor of methanogenic bacteria. J Gen Microbiol 128:2453–2462

    CAS  Google Scholar 

  • Stephenson M, Stickland LH (1932) Hydrogenlyases. J Biochem 26:712–724

    Article  CAS  Google Scholar 

  • Stickland LH (1929) The bacterial decomposition of formic acid. Biochem J 23:1187–1198

    Article  CAS  Google Scholar 

  • Taguchi F, Mizukami N, Hasegawa K, Saito-Taki T, Morimoto M (1994) Effect of amylase accumulation on hydrogen production by Clostridium beijerinckii, strain AM21B. J Ferment Bioeng 77:565–567

    Article  CAS  Google Scholar 

  • Tanisho S (1998) Effect of CO2 removal on hydrogen production by fermentation. Int J Hydrog Energy 23:559–563

    Article  CAS  Google Scholar 

  • Tanisho S, Suzuki Y, Wakao N (1987) Fermentative hydrogen evolution by Enterobacter aerogenes strain E.82005. Int J Hydrog Energy 12:623–627

    Article  CAS  Google Scholar 

  • Tanisho S, Kamiya N, Wakao N (1989) Hydrogen evolution of E. aerogenes depending on culture pH: mechanism of hydrogen evolution from NADH by means of membrane bound hydrogenase. Biochim Biophys Acta 973:1–6

  • Teplyakov VV, Levlev AL, Durgaryan SG (1985) The gas permeability of copolymers. Polym Sci USSR 27:919–926

    Article  Google Scholar 

  • Thauer RK, Morris JG (1984) Metabolism of chemotrophic anaerobes: old views and new aspects. p. 123–168. In Kelly, D.-P., Carr, N.-G. (ed.) The Microbe 1984, Part II, Prokaryotes and Eukaryotes. Soc Gen Microbiol Symb 36 Cambridge University Press

  • Tran KT, Maeda T, Wood TK (2014) Metabolic engineering of escherichia coli to enhance hydrogen production from glycerol. Appl Microbiol Biotech 98:4757–4770

    Article  CAS  Google Scholar 

  • Ueno Y, Kawai T, Sato S, Otsuka S, Morimoto M (1995) Biological production of hydrogen from cellulose by natural anaerobic microflora. J Ferment Bioeng 79:395–397

    Article  CAS  Google Scholar 

  • Ueno Y, Otsuka S, Morimoto M (1996) Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. J Ferment Bioeng 2:194–197

    Article  Google Scholar 

  • Valdez-Vazquez I, Rios-Leal E, Esparza-Garcia F, Cecchi F, Poggi-Varaldo HM (2005) Semi-continuous solid substrate anaerobic reactors for H2 production from organic waste: Mesophilic versus thermophilic regime. Int J Hydrog Energy 30:1383–1391

    Article  CAS  Google Scholar 

  • Vatsala T (1992) Hydrogen production from (cane-molasses) stillage by Citrobacter freundii and its use in improving methanogenesis. Int J Hydrog Energy 17:923–927

    Article  CAS  Google Scholar 

  • Vindis P (2009) The impact of mesophilic and thermophilic anaerobic digestion on biogas production. J Achiev Mater Manuf Eng 36:192–198

    Google Scholar 

  • Wang X, Zhao Y (2009) A bench scale study of fermentative hydrogen and methane production from food waste in integrated two-stage process. Int J Hydrog Energy 34:245–254

    Article  CAS  Google Scholar 

  • Wang CC, Chang C, Chu CP, Lee DJ et al (2003) Producing hydrogen from wastewater sludge by Clostridium bifermentans. J Biotechnol 102:83–92

    Article  CAS  Google Scholar 

  • Watanabe H, Kitamura T, Ochi S, Ozaki M (1997) Inactivation of pathogenic bacteria under mesophilic and thermophilic conditions. Water Sci Technol 36:25–32

    Article  CAS  Google Scholar 

  • Wei H, Fu Y, Magnusson L, Baker JO, Maness, PC, Xu Q, Ding SY (2014) Comparison of transcriptional profiles of Clostridium thermocellum grown on cellobiose and pretreated yellow poplar using RNA-Seq.Frontiers in Microbio 5

  • Weizmann C, Rosenfeld B (1937) The activation of the butanol-acetone fermentation of carbohydrates by Clostridium acetobutylicum. Biochem J 31:619–639

    Article  CAS  Google Scholar 

  • Wieczorek N, Kucuker MA, Kuchta K (2014) Fermentative hydrogen and methane production from microalgal biomass (chlorella vulgaris) in a two-stage combined process. Appl Energy 132:108–117

    Article  CAS  Google Scholar 

  • Wiegant WM, Hennink M, Lettinga G (1986) Separation of the propionate degradation to improve the efficiency of thermophilic anaerobic treatment of acidified wastewaters. Water Res 20:517–524

    Article  CAS  Google Scholar 

  • Wiegel J, Ljungdahl LG (1981) Thermoanaerobacter ethanolicus gen. nov., spec. nov., a new, extreme thermophilic, anaerobic bacterium. Arch Microbiol 128:343–348

    Article  CAS  Google Scholar 

  • Wildgruber G, Thomm M, Konig H, Ober K, Richiuto T, Stetter KO (1982) Methanoplanus limicola, a plate-shaped methanogen representing a novel family, the Methanoplanaceae. Arch Microbiol 132:31–36

    Article  CAS  Google Scholar 

  • Yoshida A, Nishimura T, Kawaguchi H, Inui M, Yukawa H (2005) Enhanced hydrogen production from formic acid by formate hydrogen lyase-overexpressing Escherichia coli strains. Appl Environ Microbiol 71:6762–6768

    Article  CAS  Google Scholar 

  • Zeidan AA, van Niel EWJ (2010) A quantitative analysis of hydrogen production efficiency of the extreme thermophile Caldicellulosiruptor owensensis OLT. Int J Hydrog Energy 35:1128–1137

    Article  CAS  Google Scholar 

  • Zhang ZP, Show KY, Tay JH, Liang DT, Lee DJ, Jiang WJ (2006) Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community. Process Biochem 41:2118–2123

    Article  CAS  Google Scholar 

  • Zhang JN, Li YH, Zheng HQ, Fan YT, Hou HW (2015) Direct degradation of cellulosic biomass to bio-hydrogen from a newly isolated strain clostridium sartagoforme FZ11. Bioresour Technol 192:60–67

    Article  CAS  Google Scholar 

  • Zhu H, Beland M (2006) Evaluation of alternative methods of preparing hydrogen producing seeds from digested wastewater sludge. Int J Hydrog Energy 31:1980–1988

    Article  CAS  Google Scholar 

  • Zinder SH, Cardwell SC, Anguish T (1984) Methanogenesis in a thermophilic (58°C) anaerobic digestor: Methanothrix sp. As an important aceticlastic methanogen. Appl Environ Microbiol 47(4):796–807

    CAS  Google Scholar 

Download references

Acknowledgments

Author is thankful to the Council for Scientific and Industrial Research (CSIR), Department of Biotechnology (DBT), Ministry of New and Renewable Energy (MNRE), Defence Research & Development Organisation (DRDO), and Department of Science and Technology (DST), Government of India for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debabrata Das.

Ethics declarations

This is to certify that the work described has not been published before, that it is not under consideration for publication anywhere else, and that its publication has been approved by all coauthors.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Das, D. Biohythane production from organic wastes: present state of art. Environ Sci Pollut Res 23, 9391–9410 (2016). https://doi.org/10.1007/s11356-015-5469-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5469-4

Keywords

Navigation