Skip to main content

Advertisement

Log in

CD24: from a Hematopoietic Differentiation Antigen to a Genetic Risk Factor for Multiple Autoimmune Diseases

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

The autoantibody is an essential characteristic of inflammatory disorders, including autoimmune diseases. Although the exact pathogenic mechanisms of these diseases remain elusive, accumulated evidence has implicated that genetic factors play important roles in autoimmune inflammation. Among these factors, CD24 was first identified as a heat-stable antigen in 1978 and first successfully cloned in 1990. Thereafter, its functional roles have been intensively investigated in various human diseases, especially autoimmune diseases and cancers. It is currently known that CD24 serves as a costimulatory factor of T cells that regulate their homeostasis and proliferation, while in B cells, CD24 is functionally involved in cell activation and differentiation. CD24 can enhance autoimmune diseases in terms of its protective role in the clonal deletion of autoreactive thymocytes. Furthermore, CD24 deficiency has been linked to mouse experimental autoimmune encephalomyelitis. Finally, CD24 genetic variants, including single-nucleotide polymorphisms and deletions, are etiologically relevant to autoimmune diseases, such as multiple sclerosis and systemic lupus erythematosus. Therefore, CD24 is a promising biomarker and novel therapeutic target for autoimmune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Springer T, Galfre G, Secher DS, Milstein C (1978) Monoclonal xenogeneic antibodies to murine cell surface antigens: identification of novel leukocyte differentiation antigens. Eur J Immunol 8(8):539–551

    Article  PubMed  CAS  Google Scholar 

  2. Kay R, Takei F, Humphries RK (1990) Expression cloning of a cDNA encoding M1/69-J11d heat-stable antigens. J Immunol 145(6):1952–1959

    PubMed  CAS  Google Scholar 

  3. Wenger RH, Rochelle JM, Seldin MF, Kohler G, Nielsen PJ (1993) The heat stable antigen (mouse CD24) gene is differentially regulated but has a housekeeping promoter. J Biol Chem 268(31):23345–23352

    PubMed  CAS  Google Scholar 

  4. Kay R, Rosten PM, Humphries RK (1991) CD24, a signal transducer modulating B cell activation responses, is a very short peptide with a glycosyl phosphatidylinositol membrane anchor. J Immunol 147(4):1412–1416

    PubMed  CAS  Google Scholar 

  5. Rougon G, Alterman LA, Dennis K, Guo XJ, Kinnon C (1991) The murine heat-stable antigen: a differentiation antigen expressed in both the hematolymphoid and neural cell lineages. Eur J Immunol 21(6):1397–1402

    Article  PubMed  CAS  Google Scholar 

  6. Liu, Y., H. Yin, M. Zhao, and Q. Lu, (2013), TLR2 and TLR4 in autoimmune diseases: a comprehensive review. Clin Rev Allergy Immunol

  7. Lu Q (2014) Unmet needs in autoimmunity and potential new tools. Clin Rev Allergy Immunol 47:111–118

    Article  PubMed  CAS  Google Scholar 

  8. Lu Q (2014) Unmet needs in autoimmunity and potential new tools. Clin Rev Allergy Immunol 47(2):111–118

    Article  PubMed  CAS  Google Scholar 

  9. Muller S, Radic M (2014) Citrullinated autoantigens: from diagnostic markers to pathogenetic mechanisms. Immunol, Clin Rev Allergy

    Google Scholar 

  10. Selmi C (2014) Autoimmunity in 2013. Clin Rev Allergy Immunol 47(1):100–109

    Article  PubMed  CAS  Google Scholar 

  11. Avrameas S, Selmi C (2013) Natural autoantibodies in the physiology and pathophysiology of the immune system. J Autoimmun 41:46–49

    Article  PubMed  CAS  Google Scholar 

  12. Chang C (2014) Autoimmunity: from black water fever to regulatory function. J Autoimmun 48–49:1–9

    Article  PubMed  CAS  Google Scholar 

  13. Shu SA, Wang J, Tao MH, Leung PS (2014) Gene therapy for autoimmune disease. Immunol, Clin Rev Allergy

    Google Scholar 

  14. Selmi C (2013) Autoimmunity in 2012. Clin Rev Allergy Immunol 45(2):290–301

    Article  PubMed  CAS  Google Scholar 

  15. Pillai S (2013) Rethinking mechanisms of autoimmune pathogenesis. J Autoimmun 45:97–103

    Article  PubMed  CAS  Google Scholar 

  16. Gravano DM, Hoyer KK (2013) Promotion and prevention of autoimmune disease by CD8+ T cells. J Autoimmun 45:68–79

    Article  PubMed  CAS  Google Scholar 

  17. Thaxton JE, Liu B, Zheng P, Liu Y, Li Z (2014) Deletion of CD24 impairs development of heat shock protein gp96-driven autoimmune disease through expansion of myeloid-derived suppressor cells. J Immunol 192(12):5679–5686

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Hubbe M, Altevogt P (1994) Heat-stable antigen/CD24 on mouse T lymphocytes: evidence for a costimulatory function. Eur J Immunol 24(3):731–737

    Article  PubMed  CAS  Google Scholar 

  19. Li O, Zheng P, Liu Y (2004) CD24 expression on T cells is required for optimal T cell proliferation in lymphopenic host. J Exp Med 200(8):1083–1089

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Williams LA, Hock BD, Hart DN (1996) Human T lymphocytes and hematopoietic cell lines express CD24-associated carbohydrate epitopes in the absence of CD24 mRNA or protein. Blood 88(8):3048–3055

    PubMed  CAS  Google Scholar 

  21. Suzuki T et al (2001) CD24 induces apoptosis in human B cells via the glycolipid-enriched membrane domains/rafts-mediated signaling system. J Immunol 166(9):5567–5577

    Article  PubMed  CAS  Google Scholar 

  22. Nedelec J et al (1992) Isolation and characterization of a novel glycosyl-phosphatidylinositol-anchored glycoconjugate expressed by developing neurons. Eur J Biochem 203(3):433–442

    Article  PubMed  CAS  Google Scholar 

  23. Figarella-Branger D, Moreau H, Pellissier JF, Bianco N, Rougon G (1993) CD24, a signal-transducing molecule expressed on human B lymphocytes, is a marker for human regenerating muscle. Acta Neuropathol 86(3):275–284

    Article  PubMed  CAS  Google Scholar 

  24. Elghetany MT, Patel J (2002) Assessment of CD24 expression on bone marrow neutrophilic granulocytes: CD24 is a marker for the myelocytic stage of development. Am J Hematol 71(4):348–349

    Article  PubMed  CAS  Google Scholar 

  25. Raife TJ, Lager DJ, Kemp JD, Dick FR (1994) Expression of CD24 (BA-1) predicts monocytic lineage in acute myeloid leukemia. Am J Clin Pathol 101(3):296–299

    PubMed  CAS  Google Scholar 

  26. Lund-Johansen F et al (1993) Activation of human monocytes and granulocytes by monoclonal antibodies to glycosylphosphatidylinositol-anchored antigens. Eur J Immunol 23(11):2782–2791

    Article  PubMed  CAS  Google Scholar 

  27. Williams LA et al (1996) Identification of a novel dendritic cell surface antigen defined by carbohydrate specific CD24 antibody cross-reactivity. Immunology 89(1):120–125

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. De Bruijn ML, Peterson PA, Jackson MR (1996) Induction of heat-stable antigen expression by phagocytosis is involved in in vitro activation of unprimed CTL by macrophages. J Immunol 156(8):2686–2692

    PubMed  Google Scholar 

  29. Magnaldo T, Barrandon Y (1996) CD24 (heat stable antigen, nectadrin), a novel keratinocyte differentiation marker, is preferentially expressed in areas of the hair follicle containing the colony-forming cells. J Cell Sci 109(Pt 13):3035–3045

    PubMed  CAS  Google Scholar 

  30. Enk AH, Katz SI (1994) Heat-stable antigen is an important costimulatory molecule on epidermal Langerhans’ cells. J Immunol 152(7):3264–3270

    PubMed  CAS  Google Scholar 

  31. Ye P et al (2005) Identification of epithelial auto-antigens associated with periodontal disease. Clin Exp Immunol 139(2):328–337

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Sleeman KE, Kendrick H, Ashworth A, Isacke CM, Smalley MJ (2006) CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Res 8(1):R7

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Shirasawa T et al (1993) Gene expression of CD24 core peptide molecule in developing brain and developing non-neural tissues. Dev Dyn 198(1):1–13

    Article  PubMed  CAS  Google Scholar 

  34. Schabath H, Runz S, Joumaa S, Altevogt P (2006) CD24 affects CXCR4 function in pre-B lymphocytes and breast carcinoma cells. J Cell Sci 119(Pt 2):314–325

    Article  PubMed  CAS  Google Scholar 

  35. Allman DM, Ferguson SE, Cancro MP (1992) Peripheral B cell maturation. I. Immature peripheral B cells in adults are heat-stable antigenhi and exhibit unique signaling characteristics. J Immunol 149(8):2533–2540

    PubMed  CAS  Google Scholar 

  36. Motari E et al (2009) Analysis of recombinant CD24 glycans by MALDI-TOF-MS reveals prevalence of sialyl-T antigen. Am J Biomed Sci 1(1):1–11

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Bleckmann C et al (2009) O-glycosylation pattern of CD24 from mouse brain. Biol Chem 390(7):627–645

    Article  PubMed  CAS  Google Scholar 

  38. Bleckmann C et al (2009) Glycomic analysis of N-linked carbohydrate epitopes from CD24 of mouse brain. J Proteome Res 8(2):567–582

    Article  PubMed  CAS  Google Scholar 

  39. Ohl C, Albach C, Altevogt P, Schmitz B (2003) N-glycosylation patterns of HSA/CD24 from different cell lines and brain homogenates: a comparison. Biochimie 85(6):565–573

    Article  PubMed  CAS  Google Scholar 

  40. Sammar M et al (1994) Heat-stable antigen (CD24) as ligand for mouse P-selectin. Int Immunol 6(7):1027–1036

    Article  PubMed  CAS  Google Scholar 

  41. Chen GY, Tang J, Zheng P, Liu Y (2009) CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science 323(5922):1722–1725

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Sammar M, Aigner S, Altevogt P (1997) Heat-stable antigen (mouse CD24) in the brain: dual but distinct interaction with P-selectin and L1. Biochim Biophys Acta 1337(2):287–294

    Article  PubMed  CAS  Google Scholar 

  43. Kleene R, Yang H, Kutsche M, Schachner M (2001) The neural recognition molecule L1 is a sialic acid-binding lectin for CD24, which induces promotion and inhibition of neurite outgrowth. J Biol Chem 276(24):21656–21663

    Article  PubMed  CAS  Google Scholar 

  44. Kannagi R (2004) Molecular mechanism for cancer-associated induction of sialyl Lewis X and sialyl Lewis A expression—the Warburg effect revisited. Glycoconj J 20(5):353–364

    Article  PubMed  CAS  Google Scholar 

  45. Burchell JM, Mungul A, Taylor-Papadimitriou J (2001) O-linked glycosylation in the mammary gland: changes that occur during malignancy. J Mammary Gland Biol Neoplasia 6(3):355–364

    Article  PubMed  CAS  Google Scholar 

  46. Brockhausen I (2006) Mucin-type O-glycans in human colon and breast cancer: glycodynamics and functions. EMBO Rep 7(6):599–604

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Crispe IN, Bevan MJ (1987) Expression and functional significance of the J11d marker on mouse thymocytes. J Immunol 138(7):2013–2018

    PubMed  CAS  Google Scholar 

  48. Zhou Q, Wu Y, Nielsen PJ, Liu Y (1997) Homotypic interaction of the heat-stable antigen is not responsible for its co-stimulatory activity for T cell clonal expansion. Eur J Immunol 27(10):2524–2528

    Article  PubMed  CAS  Google Scholar 

  49. Jung KC et al (2004) TCR-independent and caspase-independent apoptosis of murine thymocytes by CD24 cross-linking. J Immunol 172(2):795–802

    Article  PubMed  CAS  Google Scholar 

  50. Liu Y et al (1992) Heat-stable antigen is a costimulatory molecule for CD4 T cell growth. J Exp Med 175(2):437–445

    Article  PubMed  CAS  Google Scholar 

  51. Wu Y, Zhou Q, Zheng P, Liu Y (1998) CD28-independent induction of T helper cells and immunoglobulin class switches requires costimulation by the heat-stable antigen. J Exp Med 187(7):1151–1156

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Liu Y, Wenger RH, Zhao M, Nielsen PJ (1997) Distinct costimulatory molecules are required for the induction of effector and memory cytotoxic T lymphocytes. J Exp Med 185(2):251–262

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Li O et al (2006) Massive and destructive T cell response to homeostatic cue in CD24-deficient lymphopenic hosts. J Exp Med 203(7):1713–1720

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Berga-Bolanos R, Drews-Elger K, Aramburu J, Lopez-Rodriguez C (2010) NFAT5 regulates T lymphocyte homeostasis and CD24-dependent T cell expansion under pathologic hypernatremia. J Immunol 185(11):6624–6635

    Article  PubMed  CAS  Google Scholar 

  55. Carl JW Jr et al (2008) Autoreactive T cells escape clonal deletion in the thymus by a CD24-dependent pathway. J Immunol 181(1):320–328

    Article  PubMed  CAS  Google Scholar 

  56. Zhang X et al (2012) CD24 on thymic APCs regulates negative selection of myelin antigen-specific T lymphocytes. Eur J Immunol 42(4):924–935

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Toubai T et al (2014) Siglec-G-CD24 axis controls the severity of graft-versus-host disease in mice. Blood 123(22):3512–3523

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Duperray C et al (1990) The CD24 antigen discriminates between pre-B and B cells in human bone marrow. J Immunol 145(11):3678–3683

    PubMed  CAS  Google Scholar 

  59. Hunte BE, Capone M, Zlotnik A, Rennick D, Moore TA (1998) Acquisition of CD24 expression by Lin-CD43+ B220(low)ckit(hi) cells coincides with commitment to the B cell lineage. Eur J Immunol 28(11):3850–3856

    Article  PubMed  CAS  Google Scholar 

  60. Israel E et al (2005) Expression of CD24 on CD19–CD79a+ early B-cell progenitors in human bone marrow. Cell Immunol 236(1–2):171–178

    Article  PubMed  CAS  Google Scholar 

  61. Kokai Y, Ishii Y, Kikuchi K (1986) Characterization of two distinct antigens expressed on either resting or activated human B cells as defined by monoclonal antibodies. Clin Exp Immunol 64(2):382–391

    PubMed Central  PubMed  CAS  Google Scholar 

  62. Chappel MS et al (1996) Cross-linking the murine heat-stable antigen induces apoptosis in B cell precursors and suppresses the anti-CD40-induced proliferation of mature resting B lymphocytes. J Exp Med 184(5):1639–1649

    Article  PubMed  CAS  Google Scholar 

  63. Lu L, Chappel MS, Humphries RK, Osmond DG (2000) Regulation of cell survival during B lymphopoiesis: increased pre-B cell apoptosis in CD24-transgenic mouse bone marrow. Eur J Immunol 30(9):2686–2691

    Article  PubMed  CAS  Google Scholar 

  64. Nielsen PJ et al (1997) Altered erythrocytes and a leaky block in B-cell development in CD24/HSA-deficient mice. Blood 89(3):1058–1067

    PubMed  CAS  Google Scholar 

  65. Wenger RH et al (1995) B-cell maturation in chimaeric mice deficient for the heat stable antigen (HSA/mouse CD24). Transgenic Res 4(3):173–183

    Article  PubMed  CAS  Google Scholar 

  66. Taguchi T et al (2003) Pre-B cell antigen receptor-mediated signal inhibits CD24-induced apoptosis in human pre-B cells. J Immunol 170(1):252–260

    Article  PubMed  CAS  Google Scholar 

  67. Parlato M et al (2014) CD24-triggered caspase-dependent apoptosis via mitochondrial membrane depolarization and reactive oxygen species production of human neutrophils is impaired in sepsis. J Immunol 192(5):2449–2459

    Article  PubMed  CAS  Google Scholar 

  68. Shortman K, Naik SH (2007) Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol 7(1):19–30

    Article  PubMed  CAS  Google Scholar 

  69. Shortman K, Liu YJ (2002) Mouse and human dendritic cell subtypes. Nat Rev Immunol 2(3):151–161

    Article  PubMed  CAS  Google Scholar 

  70. Stutte S, Jux B, Esser C, Forster I (2008) CD24a expression levels discriminate Langerhans cells from dermal dendritic cells in murine skin and lymph nodes. J Invest Dermatol 128(6):1470–1475

    Article  PubMed  CAS  Google Scholar 

  71. Askew D, Harding CV (2008) Antigen processing and CD24 expression determine antigen presentation by splenic CD4+ and CD8+ dendritic cells. Immunology 123(3):447–455

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Kim TS, Gorski SA, Hahn S, Murphy KM, Braciale TJ (2014) Distinct dendritic cell subsets dictate the fate decision between effector and memory CD8(+) T cell differentiation by a CD24-dependent mechanism. Immunity 40(3):400–413

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Paulson JC, Kawasaki N (2011) Sialidase inhibitors DAMPen sepsis. Nat Biotechnol 29(5):406–407

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  74. Bedoui S et al (2009) Characterization of an immediate splenic precursor of CD8+ dendritic cells capable of inducing antiviral T cell responses. J Immunol 182(7):4200–4207

    Article  PubMed  CAS  Google Scholar 

  75. Liu JQ et al (2007) CD24 on the resident cells of the central nervous system enhances experimental autoimmune encephalomyelitis. J Immunol 178(10):6227–6235

    Article  PubMed  CAS  Google Scholar 

  76. Bai XF et al (2004) CD24 controls expansion and persistence of autoreactive T cells in the central nervous system during experimental autoimmune encephalomyelitis. J Exp Med 200(4):447–458

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Liu Y, Chen GY, Zheng P (2009) CD24-Siglec G/10 discriminates danger- from pathogen-associated molecular patterns. Trends Immunol 30(12):557–561

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. Yu C, Gershwin ME, Chang C (2014) Diagnostic criteria for systemic lupus erythematosus: a critical review. J Autoimmun 48–49:10–13

    Article  PubMed  CAS  Google Scholar 

  79. Zhao S, Long H, Lu Q (2010) Epigenetic perspectives in systemic lupus erythematosus: pathogenesis, biomarkers, and therapeutic potentials. Clin Rev Allergy Immunol 39(1):3–9

    Article  PubMed  CAS  Google Scholar 

  80. Prokunina L, Alarcon-Riquelme M (2004) The genetic basis of systemic lupus erythematosus—knowledge of today and thoughts for tomorrow. Hum Mol Genet 13(Spec No 1):R143–R148

    Article  PubMed  CAS  Google Scholar 

  81. Zandman-Goddard G, Shoenfeld Y (2003) SLE and infections. Clin Rev Allergy Immunol 25(1):29–40

    Article  PubMed  Google Scholar 

  82. Han EC (2012) Systemic lupus erythematosus. N Engl J Med 366(6):573–574, author reply 574

    Article  PubMed  CAS  Google Scholar 

  83. Kuhn A, Wenzel J, Weyd H (2014) Photosensitivity, apoptosis, and cytokines in the pathogenesis of lupus erythematosus: a critical review. Clin Rev Allergy Immunol 47(2):148–162

    Article  PubMed  CAS  Google Scholar 

  84. Moser KL et al (1998) Genome scan of human systemic lupus erythematosus: evidence for linkage on chromosome 1q in African-American pedigrees. Proc Natl Acad Sci U S A 95(25):14869–14874

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  85. Zarn JA et al (1995) The small cell lung cancer antigen cluster-4 and the leukocyte antigen CD24 are allelic isoforms of the same gene (CD24) on chromosome band 6q21. Cytogenet Cell Genet 70(1–2):119–125

    Article  PubMed  CAS  Google Scholar 

  86. Sanchez E et al (2007) Association of a CD24 gene polymorphism with susceptibility to systemic lupus erythematosus. Arthritis Rheum 56(9):3080–3086

    Article  PubMed  CAS  Google Scholar 

  87. Piotrowski P, Lianeri M, Wudarski M, Lacki JK, Jagodzinski PP (2010) CD24 Ala57Val gene polymorphism and the risk of systemic lupus erythematosus. Tissue Antigens 75(6):696–700

    Article  PubMed  CAS  Google Scholar 

  88. Wang L et al (2007) A dinucleotide deletion in CD24 confers protection against autoimmune diseases. PLoS Genet 3(4):e49

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  89. Jin L, Weiqian C, Lihuan Y (2013) Peripheral CD24hi CD27+ CD19+ B cells subset as a potential biomarker in naive systemic lupus erythematosus. Int J Rheum Dis 16(6):698–708

    Article  PubMed  CAS  Google Scholar 

  90. Blair PA et al (2010) CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients. Immunity 32(1):129–140

    Article  PubMed  CAS  Google Scholar 

  91. Nakahara J, Maeda M, Aiso S, Suzuki N (2012) Current concepts in multiple sclerosis: autoimmunity versus oligodendrogliopathy. Clin Rev Allergy Immunol 42(1):26–34

    Article  PubMed  CAS  Google Scholar 

  92. Baranzini SE, Oksenberg JR (2005) Genomics and new targets for multiple sclerosis. Pharmacogenomics 6(2):151–161

    Article  PubMed  CAS  Google Scholar 

  93. Patrucco L et al (2009) HLA-DRB1 and multiple sclerosis in Argentina. Eur J Neurol 16(3):427–429

    Article  PubMed  CAS  Google Scholar 

  94. DeLuca GC et al (2007) An extremes of outcome strategy provides evidence that multiple sclerosis severity is determined by alleles at the HLA-DRB1 locus. Proc Natl Acad Sci U S A 104(52):20896–20901

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  95. Hafler DA et al (2007) Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med 357(9):851–862

    Article  PubMed  CAS  Google Scholar 

  96. Zhou Q et al (2003) CD24 is a genetic modifier for risk and progression of multiple sclerosis. Proc Natl Acad Sci U S A 100(25):15041–15046

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  97. Otaegui D et al (2006) CD24 V/V is an allele associated with the risk of developing multiple sclerosis in the Spanish population. Mult Scler 12(4):511–514

    Article  PubMed  CAS  Google Scholar 

  98. Gonzalez SJ et al (2011) CD24 as a genetic modifier of disease progression in multiple sclerosis in Argentinean patients. J Neurol Sci 307(1–2):18–21

    Article  PubMed  CAS  Google Scholar 

  99. Wang L et al (2012) A hypermorphic SP1-binding CD24 variant associates with risk and progression of multiple sclerosis. Am J Transl Res 4(3):347–356

    PubMed Central  PubMed  CAS  Google Scholar 

  100. Bai XF et al (2000) The heat-stable antigen determines pathogenicity of self-reactive T cells in experimental autoimmune encephalomyelitis. J Clin Invest 105(9):1227–1232

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  101. Huang X, Wu H, Lu Q (2014) The mechanisms and applications of T cell vaccination for autoimmune diseases: a comprehensive review. Clin Rev Allergy Immunol 47(2):219–233

    Article  PubMed  CAS  Google Scholar 

  102. Zhong J et al (2014) MBD2 regulates TH17 differentiation and experimental autoimmune encephalomyelitis by controlling the homeostasis of T-bet/Hlx axis. J Autoimmun 53:95–104

    Article  PubMed  CAS  Google Scholar 

  103. Atreya R, Neurath MF (2005) Involvement of IL-6 in the pathogenesis of inflammatory bowel disease and colon cancer. Clin Rev Allergy Immunol 28(3):187–196

    Article  PubMed  CAS  Google Scholar 

  104. Lisiansky V et al (2014) Role of CD24 polymorphisms in the susceptibility to inflammatory bowel disease. Int J Biol Markers 29(1):e62–e68

    Article  PubMed  CAS  Google Scholar 

  105. Diaz-Gallo LM et al (2011) Analysis of the influence of two CD24 genetic variants in Crohn’s disease and ulcerative colitis. Hum Immunol 72(10):969–972

    Article  PubMed  CAS  Google Scholar 

  106. Bretz NP et al (2014) Lack of CD24 expression in mice reduces the number of leukocytes in the colon. Immunol Lett 161(1):140–148

    Article  PubMed  CAS  Google Scholar 

  107. Hahne M, Wenger RH, Vestweber D, Nielsen PJ (1994) The heat-stable antigen can alter very late antigen 4-mediated adhesion. J Exp Med 179(4):1391–1395

    Article  PubMed  CAS  Google Scholar 

  108. Alon R, Ley K (2008) Cells on the run: shear-regulated integrin activation in leukocyte rolling and arrest on endothelial cells. Curr Opin Cell Biol 20(5):525–532

    Article  PubMed  CAS  Google Scholar 

  109. Butcher EC (1991) Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 67(6):1033–1036

    Article  PubMed  CAS  Google Scholar 

  110. Aletaha D et al (2010) 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum 62(9):2569–2581

    Article  PubMed  Google Scholar 

  111. Chighizola CB, Favalli EG, Meroni PL (2014) Novel mechanisms of action of the biologicals in rheumatic diseases. Clin Rev Allergy Immunol 47(1):6–16

    Article  PubMed  CAS  Google Scholar 

  112. Kochi Y, Suzuki A, Yamamoto K (2014) Genetic basis of rheumatoid arthritis: a current review. Biochem Biophys Res Commun 452(2):254–262

    Article  PubMed  CAS  Google Scholar 

  113. Kurko J et al (2013) Genetics of rheumatoid arthritis—a comprehensive review. Clin Rev Allergy Immunol 45(2):170–179

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  114. Zhang R et al (2014) RADB: a database of rheumatoid arthritis-related polymorphisms. Database (Oxford) 2014

  115. Sanchez E et al (2008) Investigating the role of CD24 gene polymorphisms in rheumatoid arthritis. Ann Rheum Dis 67(8):1197–1198

    Article  PubMed  CAS  Google Scholar 

  116. Flores-Borja F et al (2013) CD19+ CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation. Sci Transl Med 5(173):173ra23

    Article  PubMed  CAS  Google Scholar 

  117. Caetano-Lopes J et al (2014) Rheumatoid arthritis bone fragility is associated with upregulation of IL17 and DKK1 gene expression. Clin Rev Allergy Immunol 47(1):38–45

    Article  PubMed  CAS  Google Scholar 

  118. Nesher G (2014) The diagnosis and classification of giant cell arteritis. J Autoimmun 48–49:73–75

    Article  PubMed  CAS  Google Scholar 

  119. Gonzalez-Gay MA (2001) Genetic epidemiology. Giant cell arteritis and polymyalgia rheumatica. Arthritis Res 3(3):154–157

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  120. Salvarani C, Cantini F, Boiardi L, Hunder GG (2002) Polymyalgia rheumatica and giant-cell arteritis. N Engl J Med 347(4):261–271

    Article  PubMed  Google Scholar 

  121. Weyand CM, Goronzy JJ (1999) Arterial wall injury in giant cell arteritis. Arthritis Rheum 42(5):844–853

    Article  PubMed  CAS  Google Scholar 

  122. Gonzalez-Gay MA et al (2000) Visual manifestations of giant cell arteritis. Trends and clinical spectrum in 161 patients. Medicine (Baltimore) 79(5):283–292

    Article  CAS  Google Scholar 

  123. Selmi C (2014) Unique topics and issues in rheumatology and clinical immunology. Clin Rev Allergy Immunol 47(1):1–5

    Article  PubMed  CAS  Google Scholar 

  124. Gonzalez-Gay MA et al (2007) Contribution of MHC class I region to genetic susceptibility for giant cell arteritis. Rheumatology (Oxford) 46(3):431–434

    Article  CAS  Google Scholar 

  125. Gonzalez-Gay MA, Amoli MM, Garcia-Porrua C, Ollier WE (2003) Genetic markers of disease susceptibility and severity in giant cell arteritis and polymyalgia rheumatica. Semin Arthritis Rheum 33(1):38–48

    Article  PubMed  CAS  Google Scholar 

  126. Rueda B, Miranda-Filloy JA, Martin J, Gonzalez-Gay MA (2008) Association of CD24 gene polymorphisms with susceptibility to biopsy-proven giant cell arteritis. J Rheumatol 35(5):850–854

    PubMed  CAS  Google Scholar 

  127. Dayan CM, Daniels GH (1996) Chronic autoimmune thyroiditis. N Engl J Med 335(2):99–107

    Article  PubMed  CAS  Google Scholar 

  128. Rose NR, Witebsky E (1956) Studies on organ specificity. V. Changes in the thyroid glands of rabbits following active immunization with rabbit thyroid extracts. J Immunol 76(6):417–427

    PubMed  CAS  Google Scholar 

  129. Twarog FJ, Rose NR (1968) The production of thyroid autoantibodies in mice. J Immunol 101(2):242–250

    PubMed  CAS  Google Scholar 

  130. Nakamura RM, Weigle WO (1968) Experimental thyroiditis in complement intact and deficient mice following injections of heterologous thyroglobulins without adjuvant. Proc Soc Exp Biol Med 129(2):412–416

    Article  PubMed  CAS  Google Scholar 

  131. Chen CY et al (2009) Regenerative potentials of the murine thyroid in experimental autoimmune thyroiditis: role of CD24. Endocrinology 150(1):492–499

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  132. Davies, T., Pathogenesis of Graves’ disease. The thyroid: a fundamental and clinical text, ed. Braverman LE and U. RD. 2005, Philadelphia: Lippincott Williams & Wilkins. 457–473.

  133. Nanba T, Watanabe M, Inoue N, Iwatani Y (2009) Increases of the Th1/Th2 cell ratio in severe Hashimoto’s disease and in the proportion of Th17 cells in intractable Graves’ disease. Thyroid 19(5):495–501

    Article  PubMed  CAS  Google Scholar 

  134. Inoue N, Watanabe M, Hayashi F, Hidaka Y, Iwatani Y (2013) The association between a functional polymorphism in the CD24 gene and the development of autoimmune thyroid diseases. Tissue Antigens 81(3):161–163

    Article  PubMed  CAS  Google Scholar 

  135. van der Vlugt LE et al (2014) CD24(hi) CD27(+) B cells from patients with allergic asthma have impaired regulatory activity in response to lipopolysaccharide. Clin Exp Allergy 44(4):517–528

    Article  PubMed  CAS  Google Scholar 

  136. Sumimoto K et al (2014) The role of CD19(+)CD24(high)CD38(high) and CD19(+)CD24(high)CD27(+) regulatory B cells in patients with type 1 autoimmune pancreatitis. Pancreatology 14(3):193–200

    Article  PubMed  CAS  Google Scholar 

  137. Athanassiadou P et al (2009) CD24 expression has a prognostic impact in breast carcinoma. Pathol Res Pract 205(8):524–533

    Article  PubMed  Google Scholar 

  138. Kristiansen G et al (2003) CD24 expression is a new prognostic marker in breast cancer. Clin Cancer Res 9(13):4906–4913

    PubMed  CAS  Google Scholar 

  139. Sano A et al (2009) CD24 expression is a novel prognostic factor in esophageal squamous cell carcinoma. Ann Surg Oncol 16(2):506–514

    Article  PubMed  Google Scholar 

  140. Winkler A et al (2007) CD24 expression in urothelial carcinoma of the upper urinary tract correlates with tumour progression. Virchows Arch 450(1):59–64

    Article  PubMed  CAS  Google Scholar 

  141. Choi YL et al (2007) Overexpression of CD24: association with invasiveness in urothelial carcinoma of the bladder. Arch Pathol Lab Med 131(2):275–281

    PubMed  CAS  Google Scholar 

  142. Kristiansen G et al (2002) CD24 is expressed in ovarian cancer and is a new independent prognostic marker of patient survival. Am J Pathol 161(4):1215–1221

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  143. Jacob J et al (2004) Expression of CD24 in adenocarcinomas of the pancreas correlates with higher tumor grades. Pancreatology 4(5):454–460

    Article  PubMed  CAS  Google Scholar 

  144. Kristiansen G et al (2004) CD24 expression is a significant predictor of PSA relapse and poor prognosis in low grade or organ confined prostate cancer. Prostate 58(2):183–192

    Article  PubMed  Google Scholar 

  145. Smith SC et al (2006) The metastasis-associated gene CD24 is regulated by Ral GTPase and is a mediator of cell proliferation and survival in human cancer. Cancer Res 66(4):1917–1922

    Article  PubMed  CAS  Google Scholar 

  146. Sagiv E, Kazanov D, Arber N (2006) CD24 plays an important role in the carcinogenesis process of the pancreas. Biomed Pharmacother 60(6):280–284

    Article  PubMed  CAS  Google Scholar 

  147. Li D et al (2009) CD24 polymorphisms affect risk and progression of chronic hepatitis B virus infection. Hepatology 50(3):735–742

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of Interest

Yixin Tan, Ming Zhao, Bo Xiang, Christopher Chang, and Qianjin Lu declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianjin Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Y., Zhao, M., Xiang, B. et al. CD24: from a Hematopoietic Differentiation Antigen to a Genetic Risk Factor for Multiple Autoimmune Diseases. Clinic Rev Allerg Immunol 50, 70–83 (2016). https://doi.org/10.1007/s12016-015-8470-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-015-8470-2

Keywords

Navigation