Skip to main content

Advertisement

Log in

Novel Mechanisms of Action of the Biologicals in Rheumatic Diseases

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Biological drugs targeting pro-inflammatory or co-stimulatory molecules or depleting lymphocyte subsets made a revolution in rheumatoid arthritis (RA) treatment. Their comparable efficacy in clinical trials raised the point of the heterogeneity of RA pathogenesis, suggesting that we are dealing with a syndrome rather than with a single disease. Several tumor necrosis factor-alpha (TNF-α) blockers are available, and a burning question is whether they are biosimilar or not. The evidence of diverse biological effects in vitro is in line with the fact that a lack of efficacy to one TNF-α agent does not imply a non-response to another one. As proteins, biologicals are potentially immunogenic. It has been recently raised that anti-drug antibodies (ADA) may affect their bioavailability and eventually the clinical efficacy through local formation of immune complexes and directly by preventing the interaction between the drug and TNF-α. Regular monitoring of drug and ADA levels appears the best way to tailor anti-TNF-α therapies. Owing to the pleiotropic characteristics of the target, anti-TNF-α blockers may affect several mechanisms beyond rheumatoid synovitis. As TNF-α plays a pivotal role in the induction of early atherosclerosis, treatment with TNF-inhibitors may modulate cholesterol handling, in particular, cholesterol efflux from macrophages. Side effects are a major issue because of the systemic TNF-α blocking action. The efficacy of an anti-C5 monoclonal antibody fused to a peptide targeting inflamed synovia in experimental arthritis opened the way for new strategies: Homing to the synovium of molecules neutralizing TNF would allow to maximize the therapeutic action avoiding the side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atzeni F, Benucci M, Sallì S, Dongiovanni S, Boccassini L, Sarzi-Puttini P (2012) Different effects of biological drugs in rheumatoid arthritis. Autoimmun Rev. doi:10.1016/j.autrev.2012.10.020

  2. Breedveld FC, Weisman MH, Kavanaugh AF, Cohen SB, Pavelka K, van Vollenhoven R et al (2006) The PREMIER study—a multicenter, randomized, double-blind clinical trial of combination therapy with adalimumab plus methotrexate versus methotrexate alone or adalimumab alone in patients with early, aggressive rheumatoid arthritis who had not had previous methotrexate treatment. A&R 54:26–37

    CAS  Google Scholar 

  3. Emery P, Breedveld FC, Hall S, Durez P, Chang DJ, Robertson D et al (2008) Comparison of methotrexate monotherapy with a combination of methotrexate and etanercept in active, early, moderate to severe rheumatoid arthritis (COMET): a randomised, double-blind, parallel treatment trial. Lancet 372:375–382

    CAS  PubMed  Google Scholar 

  4. St. Clair EW, van der heijde MFM, Smolen JS, Main RN, Bathon JM et al (2004) Combination of infliximab and methotrexate therapy for early rheumatoid arthritis. A&R 50:3432–3443

    CAS  Google Scholar 

  5. Emery P, Fleischmann RM, Moreland LW, Hsia HC, Strusberg I, Durez P et al (2009) Golimumab, a human anti–tumor necrosis factor a monoclonal antibody, injected subcutaneously every four weeks in methotrexate-naive patients with active rheumatoid arthritis. A&R 60:2272–2283

    CAS  Google Scholar 

  6. Westhovens R, Robles M, Ximenes AC, Nayiager S, Wollenhaupt J, Durez P et al (2009) Clinical efficacy and safety of abatacept in methotrexate-naive patients with early rheumatoid arthritis and poor prognostic factors. Ann Rheum Dis 68:1870–1877

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Tak PP, Rigby WF, Rubbert-Roth A, Peterfy CG, van Vollenvhoven RF, Stohl W et al (2011) Inhibition of joint damage and improved clinical outcomes with rituximab plus methotrexate in early active rheumatoid arthritis: the IMAGE trial. Ann Rheum Dis 70:39–46

    CAS  PubMed  Google Scholar 

  8. Weinblatt ME, Keystone EC, Furst DE, Moreland LW, Weisman MH, Birbara CA et al (2003) Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. A&R 48:35–45

    CAS  Google Scholar 

  9. Weinblatt ME, Kremer JM, Bankhurst AD, Bulpitt KJ, Fleischmann RM, Fox RI et al (1999) A trial of etanercept, a recombinant tumor necrosis factor receptor: Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N Engl J Med 340:253–259

    CAS  PubMed  Google Scholar 

  10. Maini R, St Clair EW, Breedveld F, Furst D, Kalden J, Weisman M et al (1999) Infliximab (chimeric anti-tumour necrosis factor alpha monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. ATTRACT Study Group Lancet 354:1932–1939

    CAS  Google Scholar 

  11. Keystone E, Heijde D, Mason D Jr, Landewé R, Vollenhoven RV, Combe B et al (2008) Certolizumab pegol plus methotrexate is significantly more effective than placebo plus methotrexate in active rheumatoid arthritis: findings of a fifty-two-week, phase III, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. A&R 58:3319–3329

    CAS  Google Scholar 

  12. Keystone E, Genovese MC, Klareskog L, Hsia EC, Hall S, Miranda PC et al (2010) Golimumab in patients with active rheumatoid arthritis despite methotrexate therapy: 52-week results of the GO-FORWARD study. Ann Rheum Dis 69:1129–1135

    CAS  PubMed  Google Scholar 

  13. Smolen JS, Beaulieu A, Rubbert-Roth A, Ramos-Remus C, Rovensky J, Alecock E et al (2008) Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid arthritis (OPTION study): a double-blind, placebo-controlled, randomised trial. Lancet 371:987–997

    CAS  PubMed  Google Scholar 

  14. Kremer JM, Genant HK, Moreland LW, Russell AS, Emery P, Abud-Mendoza C et al (2006) Effects of abatacept in patients with methotrexate-resistant active rheumatoid arthritis: a randomized trial. Ann Intern Med 144:865–876

    CAS  PubMed  Google Scholar 

  15. Smolen JS, Kay J, Doyle MK, Landewè R, Matteson EL, Wollenhaupt J et al (2009) Golimumab in patients with active rheumatoid arthritis after treatment with tumour necrosis factor α inhibitors (GO-AFTER study): a multicentre, randomised, double-blind, placebo-controlled, phase III trial. Lancet 374:210–221

    CAS  PubMed  Google Scholar 

  16. Emery P, Keystone E, Tony HP, Cantagrel A, van Vollenhoven R, Sanchez A et al (2008) IL-6 receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to anti-tumour necrosis factor biologicals: results from a 24-week multicentre randomised placebo-controlled trial. Ann Rheum Dis 67:1516–1523

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Genovese MC, Becker JC, Schiff M, Luggen M, Sherrer Y, Kremer J et al (2005) Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N Engl J Med 353:1114–1123

    CAS  PubMed  Google Scholar 

  18. Keystone EC, Cohen SB, Emery P, Kremer JM, Dougados M, Loveless JE et al (2012) Multiple courses of rituximab produce sustained clinical and radiographic efficacy and safety in patients with rheumatoid arthritis and an inadequate response to 1 or more tumor necrosis factor inhibitors: 5-year data from the REFLEX Study. J Rheumatol. doi:10.3899/jrheum.120573

  19. Singh JA, Christensen R, Wells GA, Suarez-Almazor ME, Buchbinder R, Lopez-Olivo MA, et al (2009) Biologics for rheumatoid arthritis: an overview of Cochrane reviews. Cochrane Database Syst Rev:CD007848

  20. Atzeni F, Antivalle M, Pallavicini FB, Caporali R, Bazzani C, Gorla R et al (2009) Predicting response to anti-TNF treatment in rheumatoid arthritis patients. Autoimmun Rev 8:431–437

    CAS  PubMed  Google Scholar 

  21. Ingegnoli F, Favalli EG, Meroni PL (2011) Does polymorphysm of genes coding for pro-inflammatory mediators predict the clinical response to tnf alpha blocking agents? A review analysis of the literature. Autoimmun Rev 10:460–463

    CAS  PubMed  Google Scholar 

  22. van Vollenhoven RF (2011) Unresolved issues in biologic therapy for rheumatoid arthritis. Nat Rev Rheumatol 7:205–215

    PubMed  Google Scholar 

  23. Perricone C, Ceccarelli F, Valesini G (2011) An overview on the genetic of rheumatoid arthritis: a never-ending story. Autoimmun Rev 10:599–608

    CAS  PubMed  Google Scholar 

  24. Mcinnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365:2205–2219

    CAS  PubMed  Google Scholar 

  25. Choy E (2012) Understanding the dynamics: pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford) 51:v3–v11

    CAS  Google Scholar 

  26. Schmidt D, Goronzy JJ, Weyand CM (1996) CD4+ CD7− CD28− T cells are expanded in rheumatoid arthritis and are characterized by autoreactivity. J Clin Invest 97:2027–2037

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Wegner N, Lundberg K, Kinloch A, Fisher B, Malmström V, Feldmann M et al (2010) Autoimmunity to specific citrullinated proteins gives the first clues to the etiology of rheumatoid arthritis. Immunol Rev 233:34–54

    CAS  PubMed  Google Scholar 

  28. Wiik AS, van Venrooij WJ, Pruijn GJM (2010) All you wanted to know about anti-CCP but were afraid to ask. Autoimmun Rev 10:90–93

    CAS  PubMed  Google Scholar 

  29. Szodoray P, Szabó Z, Kapitány A, Gyetvai A, Lakos G, Szántó S et al (2010) Anti-citrullinated protein/peptide autoantibodies in association with genetic and environmental factors as indicators of disease outcome in rheumatoid arthritis. Autoimmun Rev 9:140–143

    CAS  PubMed  Google Scholar 

  30. Moura RA, Graca L, Fonseca JE (2012) To B or not to B the conductor of rheumatoid arthritis orchestra. Clin Rev Allergy Immunol 43:281–291

    CAS  PubMed  Google Scholar 

  31. Benucci M, Manfredi M, Puttini PS, Atzeni F (2010) Predictive factors of response to rituximab therapy in rheumatoid arthritis: what do we know today? Autoimmun Rev 9:801–803

    CAS  PubMed  Google Scholar 

  32. Miossec P, Korn T, Kuchroo VK (2009) Interleukin-17 and type 17 helper T cells. N Engl J Med 361:888–898

    CAS  PubMed  Google Scholar 

  33. Mijnheer G, Prakken BJ, van Wijk F (2013) The effect of autoimmune arthritis treatment strategies on regulatory T-cell dynamics. Curr Opin Rheumatol 25. doi:10.1097/BOR.0b013e32835d0ee4

  34. Genovese MC, Durez P, Richards HB, Supronik J, Dokoupilova E, Mazurov V et al (2012) Efficacy and safety of secukinumab in patients with rheumatoid arthritis: a phase II, dose-finding, double-blind, randomised, placebo controlled study. Ann Rheum Dis DOI: annrheumdis-2012-201601

  35. Mcinnes IB, Schett G (2007) Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 7:429–442

    CAS  PubMed  Google Scholar 

  36. Cohen SB, Cohen SB, Dore RK, Dore RK, Lane NE, Lane NE et al (2008) Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum 58:1299–1309

    CAS  PubMed  Google Scholar 

  37. Genovese MC, Cohen S, Moreland LW, Lium D, Robbins S, Newmark R et al (2004) Combination therapy with etanercept and anakinra in the treatment of patients with rheumatoid arthritis who have been treated unsuccessfully with methotrexate. Arthritis Rheum 50:1412–1419

    CAS  PubMed  Google Scholar 

  38. Weinblatt ME, Combe B, Covucci A, Aranda R, Becker J-C, Keystone EC (2006) Safety of the selective costimulation modulator abatacept in rheumatoid arthritis patients receiving background biologic and nonbiologic disease-modifying antirheumatic drugs: a one-year randomized, placebo-controlled study. Arthritis Rheum 54:2807–2816

    CAS  PubMed  Google Scholar 

  39. Tincani A, Andreoli L, Bazzani C, Bosiso D, Sozzani S (2007) Inflammatory molecules: a target for treatment of systemic autoimmune diseases. Autoimmun Rev 7:1–7

    CAS  PubMed  Google Scholar 

  40. Atzeni F, Sarzi-Puttini P, Gorla R, Marchesoni A, Caporali R (2011) Switching rheumatoid arthritis treatments: an update. Autoimmun Rev 10:397–403

    PubMed  Google Scholar 

  41. Atzeni F, Talotta R, Benucci M, Salaffi F, Cassinotti A, Varisco V et al (2012) Immunogenicity and autoimmunity during anti-TNF therapy. Autoimmun Rev. doi:10.1016/j.autrev.2012.10.021

  42. Bendtzen K, Geborek P, Svenson M, Larsson L, Kapetanovic MC, Saxne T (2006) Individualized monitoring of drug bioavailability and immunogenicity in rheumatoid arthritis patients treated with the tumor necrosis factor alpha inhibitor infliximab. Arthritis Rheum 54:3782–3789

    CAS  PubMed  Google Scholar 

  43. Favalli EG, Marchesoni A, Colombo GL, Sinigaglia L (2008) Pattern of use, economic burden and vial optimization of infliximab for rheumatoid arthritis in Italy. Clin Exp Rheumatol 26:45–51

    CAS  PubMed  Google Scholar 

  44. Olivieri I, D’Angelo S, Padula A, Leccese P, Nigro A, Palazzi C (2012) Can we reduce the dosage of biologics in spondyloarthritis? Autoimmun Rev. doi:10.1016/j.autrev.2012.08.013

  45. Bendtzen K (2011) Is there a need for immunopharmacologic guidance of anti-tumor necrosis factor therapies? Arthritis Rheum 63:867–870

    PubMed  Google Scholar 

  46. Baert F, Noman M, Vermeire S, Van Assche G, D' Haens G, Carbonez A et al (2003) Influence of immunogenicity on the long-term efficacy of infliximab in Crohn's disease. N Engl J Med 348:601–608

    CAS  PubMed  Google Scholar 

  47. Radstake TRDJ, Svenson M, Eijsbouts AM, Van Den Hoogen FHJ, Enevold C, van Riel PLCM et al (2009) Formation of antibodies against infliximab and adalimumab strongly correlates with functional drug levels and clinical responses in rheumatoid arthritis. Ann Rheum Dis 68:1739–1745

    CAS  PubMed  Google Scholar 

  48. Emi Aikawa N, Carvalho JF, Artur Almeida Silva C, Bonfá E (2009) Immunogenicity of anti-TNF-α agents in autoimmune diseases. Clin Rev Allergy Immunol 38:82–89

    Google Scholar 

  49. Bendtzen K, Ainsworth M, Steenholdt C, Thomsen OØ, Brynskov J (2009) Individual medicine in inflammatory bowel disease: monitoring bioavailability, pharmacokinetics and immunogenicity of anti-tumour necrosis factor-alpha antibodies. Scand J Gastroenterol 44:774–781

    CAS  PubMed  Google Scholar 

  50. Dubey S, Kerrigan N, Mills K, Scott DG (2009) Bronchospasm associated with anti-TNF treatment. Clin Rheumatol 28:989–992

    CAS  PubMed  Google Scholar 

  51. Descotes J, Gouraud A (2008) Clinical immunotoxicity of therapeutic proteins. Expert Opin Drug Metab Toxicol 4:1537–1549

    CAS  PubMed  Google Scholar 

  52. Bendtzen K, Svenson M (2011) Enzyme immunoassays and radioimmunoassays for quantification of anti-TNF biopharmaceuticals and anti-drug antibodies. In: Tovey MG (ed) Detection and quantification of antibodies to biopharmaceuticals. Practical and applied considerations. John Wiley & Sons, Inc, West Sussex, pp 83–101

    Google Scholar 

  53. Bendtzen K (2008) Immunogenicity of anti-TNF antibodies. In: van de Weert M, Møller EH (eds) Immunogenicity of biopharmaceuticals, vol VIII. Springer, New York, pp 189–203

    Google Scholar 

  54. Svenson M, Geborek P, Saxne T, Bendtzen K (2007) Monitoring patients treated with anti-TNF-alpha biopharmaceuticals: assessing serum infliximab and anti-infliximab antibodies. Rheumatology (Oxford) 46:1828–1834

    CAS  Google Scholar 

  55. Lallemand C, Kavrochorianou N, Steenholdt C, Bendtzen K, Ainsworth MA, Meritet J-F et al (2011) Reporter gene assay for the quantification of the activity and neutralizing antibody response to TNFα antagonists. J Immunol Methods 373:229–239

    CAS  PubMed  Google Scholar 

  56. Rigby WFC (2007) Drug Insight: different mechanisms of action of tumor necrosis factor antagonists—passive–aggressive behavior? Nat Rev Clin Pract 4:227–233

    Google Scholar 

  57. Mitoma H, Horiuchi T, Tsukamoto H, Tamimoto Y, Kimoto Y, Uchino A et al (2008) Mechanisms for cytotoxic effects of anti-tumor necrosis factor agents on transmembrane tumor necrosis factor alpha-expressing cells: comparison among infliximab, etanercept, and adalimumab. Arthritis Rheum 58:1248–1257

    CAS  PubMed  Google Scholar 

  58. Nesbitt A, Fossati G, Bergin M, Stephens P, Stephens S, Foulkes R et al (2007) Mechanism of action of certolizumab pegol (CDP870): in vitro comparison with other anti-tumor necrosis factor alpha agents. Inflamm Bowel Dis 13:1323–1332

    PubMed  Google Scholar 

  59. Lügering A, Schmidt M, Lügering N, Pauels HG, Domschke W, Kucharzik T (2001) Infliximab induces apoptosis in monocytes from patients with chronic active Crohn's disease by using a caspase-dependent pathway. Gastroenterology 121:1145–1157

    PubMed  Google Scholar 

  60. Kirchner S, Holler E, Haffner S, Andreesen R, Eissner G (2004) Effect of different tumor necrosis factor (TNF) reactive agents on reverse signaling of membrane integrated TNF in monocytes. Cytokine 28:67–74

    CAS  PubMed  Google Scholar 

  61. Harashima S, Horiuchi T, Hatta N, Morita C, Higuchi M, Sawabe T et al (2001) Outside-to-inside signal through the membrane TNF-alpha induces E-selectin (CD62E) expression on activated human CD4+ T cells. J Immunol 166:130–136

    CAS  PubMed  Google Scholar 

  62. Vudattu NK, Holler E, Ewing P, Schulz U, Haffner S, Burger V et al (2005) Reverse signalling of membrane-integrated tumour necrosis factor differentially regulates alloresponses of CD4+ and CD8+ T cells against human microvascular endothelial cells. Immunology 115:536–543

    CAS  PubMed Central  PubMed  Google Scholar 

  63. van den Brande JM, Braat H, van den Brink GR, Versteeg HH, Bauer CA, Hoedemaeker I et al (2003) Infliximab but not etanercept induces apoptosis in lamina propria T-lymphocytes from patients with Crohn's disease. Gastroenterology 124:1774–1785

    PubMed  Google Scholar 

  64. Yu M, Shi W, Zhang J, Niu L, Chen Q, Yan D et al (2009) Influence of reverse signaling via membrane TNF-alpha on cytotoxicity of NK92 cells. Eur J Cell Biol 88:181–191

    CAS  PubMed  Google Scholar 

  65. Nurmohamed MT (2009) Cardiovascular risk in rheumatoid arthritis. Autoimmun Rev 8:663–667

    PubMed  Google Scholar 

  66. Sarzi-Puttini P, Atzeni F, Gerli R, Bartoloni E, Doria A, Barskova T et al (2010) Cardiac involvement in systemic rheumatic diseases: an update. Autoimmun Rev 9:849–852

    PubMed  Google Scholar 

  67. Watson DJ, Rhodes T, Guess HA (2003) All-cause mortality and vascular events among patients with rheumatoid arthritis, osteoarthritis, or no arthritis in the UK General Practice Research Database. J Rheumatol 30:1196–1202

    PubMed  Google Scholar 

  68. Bartoloni E, Alunno A, Bistoni O, Gerli R (2011) Cardiovascular risk in rheumatoid arthritis and systemic autoimmune rheumatic disorders: a suggested model of preventive strategy. Clin Rev Allergy Immunol. doi:10.1007/s12016-010-8251

  69. Bergholm R, Leirisalo-Repo M, Vehkavaara S, Makimattila S, Taskinen MR, Yki-Jarvinen H (2002) Impaired responsiveness to NO in newly diagnosed patients with rheumatoid arthritis. Arterioscler Thromb Vasc Biol 22:1637–1641

    CAS  PubMed  Google Scholar 

  70. Hannawi S, Marwick TH, Thomas R (2009) Inflammation predicts accelerated brachial arterial wall changes in patients with recent onset rheumatoid arthritis. Arthritis Res Ther 11:R5.1

    Google Scholar 

  71. van Sijl AM, Peters MJ, Dk K, de Vet HC, Gonzalez-Gay MA, Smulders YM et al (2011) Carotid intima media thickness in rheumatoid arthritis as compared to control subjects: a meta-analysis. Semin Arthritis Rheum 40:389–397

    PubMed  Google Scholar 

  72. Bartoloni E, Alunno A, Bistoni O, Gerli R (2010) How early is the atherosclerotic risk in rheumatoid arthritis? Autoimmun Rev 9:701–707

    CAS  PubMed  Google Scholar 

  73. Brady S, de Courten B, Reid CM, Cicuttini FM, de Courten MP, Liew D (2009) The role of traditional cardiovascular risk factors among patients with rheumatoid arthritis. J Rheumatol 36:34–40

    PubMed  Google Scholar 

  74. Bartoloni E, Shoenfeld Y, Gerli R (2011) Inflammatory and autoimmune mechanisms in the induction of atherosclerotic damage in systemic rheumatic diseases: two faces of the same coin. Arthritis Care Res 63:178–183

    CAS  Google Scholar 

  75. Sitia S, Tomasoni L, Atzeni F, Ambrosio G, Cordiano C, Catalano A et al (2010) From endothelial dysfunction to atherosclerosis. Autoimmun Rev 9:830–834

    CAS  PubMed  Google Scholar 

  76. Gerli R, Bartoloni Bocci EB, Sherer Y, Vaudo G, Moscatelli S, Shoenfeld Y (2008) Association of anti-cyclic citrullinated peptide antibodies with subclinical atherosclerosis in patients with rheumatoid arthritis. Ann Rheum Dis 67:724–725

    CAS  PubMed  Google Scholar 

  77. Peters MJ, van Halm VP, Voskuyl AE, Smulders YM, Boers M, Lems WF et al (2009) Does rheumatoid arthritis equal diabetes mellitus as an independent risk factor for cardiovascular disease? A prospective study. Arthritis Rheum 61:1571–1579

    PubMed  Google Scholar 

  78. Situnayake R, Sitas G (1997) Dyslipidemia and rheumatoid arthritis. Ann Rheum Dis 56:41–42

    Google Scholar 

  79. Lazarevic MB, Vitic J, Mladenovic V, Myones BL, Skosey JL, Swedler WI (1992) Dyslipoproteinemia in the course of active rheumatoid arthritis. Semin Arthritis Rheum 22:172–178

    CAS  PubMed  Google Scholar 

  80. Vaisar T, Pennathur S, Green PS, Gharib SA, Hoofnagle AN, Cheung MC et al (2007) Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J Clin Invest 117:746–756

    CAS  PubMed Central  PubMed  Google Scholar 

  81. McMahon M, Grossman J, FitzGerald J, Dahlin-Lee E, Wallace DJ, Thong BY et al (2006) Proinflammatory high-density lipoprotein as a biomarker for atherosclerosis in patients with systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum 54:2541–2549

    CAS  PubMed  Google Scholar 

  82. Cederholm A, Svenungsson E, Stengel D, Fei GZ, Pockeley AG, Ninio E et al (2004) Platelet-activating factor-acetylhydrolase and other novel risk and protective factors for cardiovascular disease in systemic lupus erythematosus. Arthritis Rheum 50:2869–2876

    CAS  PubMed  Google Scholar 

  83. Dinu A, Merrill JT, Shen C, Antonov IV, Myones BL, Lahita RG (1998) Frequency of antibodies to the cholesterol transport apolipoprotein A1 in patients with SLE. Lupus 7:355–360

    CAS  PubMed  Google Scholar 

  84. Vaarala O, Alfthan G, Jauhiainen M, Leirisalo-Repo M, Aho K, Palosuo T (1993) Cross-reaction between antibodies to oxidised low-density lipoprotein and to cardiolipin in systemic lupus erythematosus. Lancet 341:923–925

    CAS  PubMed  Google Scholar 

  85. Ohashi R, Mu H, Wang X, Yao Q, Chen C (2005) Reverse cholesterol transport and cholesterol efflux in atherosclerosis. Q J Med 98:845–856

    CAS  Google Scholar 

  86. Khera AV, Cuchel M, de la Llera-Moya M, Rodrigues A, Burke MF, Jafri K et al (2011) Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med 364:127–135

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Azzam KM, Fessler MB (2012) Crosstalk between reverse cholesterol transport and innate immunity. Trends Endocrinol Metab 23:169–178

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Atzeni F, Turiel M, Caporali R, Cavagna L, Tomasoni L, Sitia et al (2010) The effects of pharmacological therapy on the cardiovascular system of patients with systemic rheumatic diseases. Autoimmun Rev 9:835–839

    CAS  PubMed  Google Scholar 

  89. Chighizola C, Schioppo T, Ingegnoli F, Meroni PL (2012) Potential effect of anti-inflammatory treatment on reducing the cardiovascular risk in rheumatoid arthritis. Curr Vasc Pharmacol 43:292–301

    Google Scholar 

  90. Fon Tacer K, Kuzman D, Seliskar M, Pompon D, Rozman D (2007) TNF-α interferes with lipid homeostasis and activates acute and proatherogenic process. Physiol Genomics 31:216–227

    PubMed  Google Scholar 

  91. Zhang Y, McGillicuddy FC, Hinkle CC, O'Neill S, Glick JM, Rothblat GH et al (2010) Adipocyte modulation of high-density lipoprotein cholesterol. Circulation 121:1347–1355

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Macor P, Durigutto P, De Maso L, Garrovo C, Biffi S, Cortini A et al (2012) Treatment of arthritis models by targeting synovial endothelium with a neutralizing recombinant antibody to C5. Arthritis Rheum 64:2559–2567

    CAS  PubMed  Google Scholar 

  93. Brodeurm JP, Ruddy S, Schwartz LB, Moxley G (1991) Synovial fluid levels of complement SCb-9 and fragment Bb are elevated in patients with rheumatoid arthritis. Arthritis Rheum 34:1531–1537

    Google Scholar 

  94. Chen M, Daha MR, Kallenberg GC (2010) The complement system in systemic autoimmune diseases. J Autoimmun 34:276–286

    Google Scholar 

  95. Hietala MA, Nandakumar KS, Persson L, Fahlen S, Holmdahl R, Pekna M (2004) Complement activation by both classical and alternative pathway is critical for the effector phase of arthritis. J Immunol 34:1208–1216

    CAS  Google Scholar 

  96. Wang Y, Kristan J, Hao L, Lenkoski CS, Shen Y, Matis LA (2000) A role for complement in antibody-mediated inflammation: C5-deficient DBA/1 mice are resistant to collagen-induced arthritis. J Immunol 164:4340–4347

    CAS  PubMed  Google Scholar 

  97. Ji H, Ohmura K, Mahmood U, Lee DM, Hofhuis FM, Boackle SA et al (2002) Arthritis critically dependent on innate immune system players. Immunity 16:157–168

    CAS  PubMed  Google Scholar 

  98. Banda NK, Takahashi M, Levitt B, Glogowska M, Nicholas J, Takahashi K et al (2010) Essential role of complement mannose-binding lectin-associated serine-protyeases-1/3 in the murine collagen antibody-induced model of inflammatory arthritis. J Immunol 185:5598–5606

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Mihai S, Nimmerjahn F (2012) The role of Fc receptors and complement in autoimmunity. Autoimmun Rev. doi:10.1016/j.autrev.2012.10.008

  100. Whaley K, Guc D, Gulati P, Lappin D (1992) Synthesis of complement components by synovial membrane. Immunopharmacology 24:83–89

    CAS  PubMed  Google Scholar 

  101. Ballanti E, Perricone E, di Muzio G, Kroegler B, Chimenti MS, Graceffa D et al (2011) Role of the complement system in rheumatoid arthritis and psoriatic arthritis: relationship with anti-TNF inhibitors. Autoimmun Rev 10:617–623

    CAS  PubMed  Google Scholar 

  102. Robbins DL, Fiegal DW Jr, Leek JC, Shapiro R, Wiesner K (1986) Complement activation by 19S IgM rheumatoid factor: relationship to disease activity in rheumatoid arthritis. J Rheumatol 13:33–38

    CAS  PubMed  Google Scholar 

  103. Sato Y, Sato R, Watanabe H, Kogure A, Watanabe K, Nishimaki T et al (1993) Complement activating properties of monoreactive and polyreactive IgM rheumatoid factors. Ann Rheum Dis 52:795–800

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Sato Y, Watanabe H, Kogure A, Miyata M, Watanabe K, Nishimaki T et al (1995) Complement-activating properties of IgM rheumatoid factors reacting with IgG subclasses. Clin Rheumatol 14:425–428

    CAS  PubMed  Google Scholar 

  105. Trouw LA, Haisma EM, Levarht EW, van der Woude D, Ioan-Facsinay A, Daha M et al (2009) Anti-cyclic citrullinated peptide antibodies from rheumatoid arthritis patients activate complement via both the classical and alternative pathways. Arthritis Rheum 60:1923–1931

    CAS  PubMed  Google Scholar 

  106. Wolbink GJ, Brouwer MC, Buysman S, ten Berge IJM, Hack CE (1996) CRP-mediated activation of complement in vivo: assessment by measuring circulating complement-C-reactive protein complexes. J Immunol 157:473–479

    CAS  PubMed  Google Scholar 

  107. Sjöberg A, Onnerfjord P, Mörgelin M, Heinegård D, Blom AM (2005) The extracellular matrix and inflammation: fibromodulin activates the classical pathway of complement by directly binding C1q. J Biol Chem 280:32301–32308

    PubMed  Google Scholar 

  108. Groeneveld TW, Oroszlan M, Owens RT, Faber-Krol MC, Bakker AC, Arlaud GJ et al (2005) Interactions of the extracellular matrix proteoglycans decorin and biglycan with C1q and collectins. J Immunol 175:4715–4723

    CAS  PubMed  Google Scholar 

  109. Happonen KE, Heinegård D, Saxne T, Blom AM (2012) Interactions of the complement system with molecules of extracellular matrix: relevance for joint diseases. Immunobiology 217:1088–1096

    CAS  PubMed  Google Scholar 

  110. Kurreeman FA, Goulielmos GN, Alizadeh BZ, Rueda B, Houwing-Duistermaat J, Sanchez E et al (2009) The TRAF1-C5 region on chromosome 9q33 is associated with multiple autoimmune diseases. Ann Rheum Dis 69:696–699

    PubMed  Google Scholar 

  111. Plenge RM, Seielstad M, Padyukov L, Lee AT, Remmers EF, Ding B et al (2007) TRAF1-C5 as a risk locus for rheumatoid arthritis—a genomewide study. N Engl J Med 357:1199–1209

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Wang Y, Rollins SA, Madri JA, Matis LA (1995) Anti-C5 monoclonal antibody therapy prevents collagen-induced arthritis and ameliorates established disease. Proc Natl Acad Sci U S A 92:8955–8959

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Woodruff TM, Strachan AJ, Dryburgh N, Shiels IA, Reid RC, Fairlie DP et al (2002) Antiarthritic activity of an orally active C5a receptor antagonist against antigen-induced monarticular arthritis in the rat. Arthritis Rheum 46:2476–2485

    CAS  PubMed  Google Scholar 

  114. Kaplan M (2002) Eculizumab (alexion). Curr Opin Investig Drugs 3:1017–1023

    CAS  PubMed  Google Scholar 

  115. Rosenblum H, Amital H (2011) Anti-TNF therapy: safety aspects of taking the risk. Autoimmun Rev 10:563–568

    PubMed  Google Scholar 

  116. Polachek A, Caspi D, Elkayam O (2012) The perioperative use of biologic agents in patients with rheumatoid arthritis. Autoimmun Rev DOI:j.autrev.2012.04.001

  117. Henry A, Gong HP, Nesbitt A (2011) Mapping the certolizumab pegol epitope on TNF and comparison with infliximab, adalimumab and etanercept. Ann Rheum Dis 70(Suppl3):249

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Luigi Meroni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chighizola, C.B., Favalli, E.G. & Meroni, P.L. Novel Mechanisms of Action of the Biologicals in Rheumatic Diseases. Clinic Rev Allerg Immunol 47, 6–16 (2014). https://doi.org/10.1007/s12016-013-8359-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-013-8359-x

Keywords

Navigation