Skip to main content

Advertisement

Log in

Rheumatoid Arthritis Bone Fragility Is Associated With Upregulation of IL17 and DKK1 Gene Expression

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Our aim was to compare bone gene expression in rheumatoid arthritis (RA) and primary osteoporosis (OP) patients. Secondary aims were to determine the association of gene expression of the Wnt/β-catenin signaling pathway with inflammatory cytokines in the bone microenvironment and to assess the serum levels of Wnt/β-catenin proteins in both groups. RA patients referred for hip replacement surgery were recruited. Primary OP patients were used as controls. Gene expression of Wnt pathway mediators, matrix proteins, and pro-inflammatory cytokines were analyzed in bone samples. Bone turnover markers, inflammatory cytokines, and Wnt mediators were measured in serum. Twenty-two patients were included: 10 with RA and 12 with primary OP. The expressions of Wnt10b (p = 0.034), its co-receptor LRP6 (p = 0.041), and its negative regulator DKK1 (p = 0.008) were upregulated in RA bone. IL17 gene expression in bone was upregulated in RA patients (p = 0.031) and correlated positively with Wnt10b (r = 0.810, p = 0.015), DKK2 (r = 0.800, p = 0.010), and RANKL/OPG ratio (r = 0.762, p = 0.028). DKK2 (p = 0.04) was significantly decreased in RA serum compared with primary OP. In conclusion, bone fragility in RA patients is induced by an unbalanced bone microenvironment and is associated with a specific gene expression pattern, namely, the upregulation of IL17 and DKK1, suggesting that the modulation of these two pathways might prevent RA systemic bone loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alamanos Y, Drosos AA (2005) Epidemiology of adult rheumatoid arthritis. Autoimmun Rev 4:130–136

    Article  PubMed  Google Scholar 

  2. Orstavik RE, Haugeberg G, Mowinckel P, Hoiseth A, Uhlig T, Falch JA et al (2004) Vertebral deformities in rheumatoid arthritis: a comparison with population-based controls. Arch Intern Med 164:420–425

    Article  PubMed  Google Scholar 

  3. Husby G, Williams RC Jr (1988) Synovial localization of tumor necrosis factor in patients with rheumatoid arthritis. J Autoimmun 1:363–371

    Article  CAS  PubMed  Google Scholar 

  4. Feldmann M, Brennan FM, Chantry D, Haworth C, Turner M, Abney E et al (1990) Cytokine production in the rheumatoid joint: implications for treatment. Ann Rheum Dis 49(Suppl 1):480–486

    PubMed  Google Scholar 

  5. Nouri AM, Panayi GS, Goodman SM (1984) Cytokines and the chronic inflammation of rheumatic disease. I. The presence of interleukin-1 in synovial fluids. Clin Exp Immunol 55:295–302

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Symons JA, McDowell TL, di Giovine FS, Wood NC, Capper SJ, Duff GW (1989) Interleukin 1 in rheumatoid arthritis: potentiation of immune responses within the joint. Lymphokine Res 8:365–372

    CAS  PubMed  Google Scholar 

  7. Houssiau FA, Devogelaer JP, Van Damme J, de Deuxchaisnes CN, Van Snick J (1988) Interleukin-6 in synovial fluid and serum of patients with rheumatoid arthritis and other inflammatory arthritides. Arthritis Rheum 31:784–788

    Article  CAS  PubMed  Google Scholar 

  8. Hirano T, Matsuda T, Turner M, Miyasaka N, Buchan G, Tang B et al (1988) Excessive production of interleukin 6/B cell stimulatory factor-2 in rheumatoid arthritis. Eur J Immunol 18:1797–1801

    Article  CAS  PubMed  Google Scholar 

  9. Hirota K, Hashimoto M, Yoshitomi H, Tanaka S, Nomura T, Yamaguchi T et al (2007) T cell self-reactivity forms a cytokine milieu for spontaneous development of IL-17+ Th cells that cause autoimmune arthritis. J Exp Med 204:41–47

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y et al (2006) Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 203:2673–2682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Lubberts E, van den Bersselaar L, Oppers-Walgreen B, Schwarzenberger P, Coenen-de Roo CJ, Kolls JK et al (2003) IL-17 promotes bone erosion in murine collagen-induced arthritis through loss of the receptor activator of NF-kappa B ligand/osteoprotegerin balance. J Immunol 170:2655–2662

    Article  CAS  PubMed  Google Scholar 

  12. Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D et al (2007) Dickkopf-1 is a master regulator of joint remodeling. Nat Med 13:156–163

    Article  CAS  PubMed  Google Scholar 

  13. Koay MA, Brown MA (2005) Genetic disorders of the LRP5-Wnt signalling pathway affecting the skeleton. Trends Mol Med 11:129–137

    Article  PubMed  Google Scholar 

  14. Cui Y, Niziolek PJ, MacDonald BT, Zylstra CR, Alenina N, Robinson DR et al (2011) Lrp5 functions in bone to regulate bone mass. Nat Med 17:684–691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Krishnan V, Bryant HU, Macdougald OA (2006) Regulation of bone mass by Wnt signaling. J Clin Invest 116:1202–1209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Cadigan KM, Liu YI (2006) Wnt signaling: complexity at the surface. J Cell Sci 119:395–402

    Article  CAS  PubMed  Google Scholar 

  17. Westendorf JJ, Kahler RA, Schroeder TM (2004) Wnt signaling in osteoblasts and bone diseases. Gene 341:19–39

    Article  CAS  PubMed  Google Scholar 

  18. Zhang C, Cho K, Huang Y, Lyons JP, Zhou X, Sinha K et al (2008) Inhibition of Wnt signaling by the osteoblast-specific transcription factor Osterix. Proc Natl Acad Sci U S A 105:6936–6941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Zhang C (2010) Transcriptional regulation of bone formation by the osteoblast-specific transcription factor Osx. J Orthop Surg Res 5:37

    Article  PubMed Central  PubMed  Google Scholar 

  20. Krause C, Korchynskyi O, de Rooij K, Weidauer SE, de Gorter DJ, van Bezooijen RL et al (2010) Distinct modes of inhibition by sclerostin on bone morphogenetic protein and Wnt signaling pathways. J Biol Chem 285:41614–41626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Li X, Ominsky MS, Niu QT, Sun N, Daugherty B, D’Agostin D et al (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 23:860–869

    Article  PubMed  Google Scholar 

  22. Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE et al (2003) Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 22:6267–6276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Abdulghani S, Caetano-Lopes J, Canhao H, Fonseca JE (2009) Biomechanical effects of inflammatory diseases on bone-rheumatoid arthritis as a paradigm. Autoimmun Rev 8:668–671

    Article  CAS  PubMed  Google Scholar 

  24. Caetano-Lopes J, Nery AM, Henriques R, Canhão H, Duarte J, Amaral PM et al (2009) Chronic arthritis induces quantitative and qualitative bone disturbances leading to compromised biomechanical properties. Clin Exp Rheumatol 27:475–482

    CAS  PubMed  Google Scholar 

  25. Caetano-Lopes J, Nery AM, Canhao H, Duarte J, Cascao R, Rodrigues A et al (2010) Chronic arthritis leads to disturbances in the bone collagen network. Arthritis Res Ther 12:R9

    Article  PubMed Central  PubMed  Google Scholar 

  26. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd et al (2010) 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum 62:2569–2581

    Article  PubMed  Google Scholar 

  27. Marques A, Mota A, Canhão H, Romeu JC, Machado P, Ruano A et al. (2013) A FRAX model for the estimation of osteoporotic fracture probability in Portugal. Acta Reumatol Port (in press)

  28. Aleixo I, Vale AC, Lúcio M, Amaral PM, Rosa LG, Caetano-Lopes J et al (2013) A method for the evaluation of femoral head trabecular bone compressive properties. Advanced Materials Forum VI. Mater Sci Forum 730–732:3–8

    Google Scholar 

  29. Egyhazi S, Bjohle J, Skoog L, Huang F, Borg AL, Frostvik Stolt M et al (2004) Proteinase K added to the extraction procedure markedly increases RNA yield from primary breast tumors for use in microarray studies. Clin Chem 50:975–976

    Article  CAS  PubMed  Google Scholar 

  30. Caetano-Lopes J, Lopes A, Rodrigues A, Fernandes D, Perpetuo IP, Monjardino T et al (2011) Upregulation of inflammatory genes and downregulation of sclerostin gene expression are key elements in the early phase of fragility fracture healing. PLoS One 6:e16947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Wong ML, Medrano JF (2005) Real-time PCR for mRNA quantitation. Biotechniques 39:75–85

    Article  CAS  PubMed  Google Scholar 

  32. Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6:986–994

    Article  CAS  PubMed  Google Scholar 

  33. Li Y, Lu W, King TD, Liu CC, Bijur GN, Bu G (2010) Dkk1 stabilizes Wnt co-receptor LRP6: implication for Wnt ligand-induced LRP6 down-regulation. PLoS One 5:e11014

    Article  PubMed Central  PubMed  Google Scholar 

  34. Li X, Liu P, Liu W, Maye P, Zhang J, Zhang Y et al (2005) Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nat Genet 37:945–952

    Article  CAS  PubMed  Google Scholar 

  35. Lee YS, Lee KA, Yoon HB, Yoo SA, Park YW, Chung Y et al (2012) The Wnt inhibitor secreted Frizzled-Related Protein 1 (sFRP1) promotes human Th17 differentiation. Eur J Immunol 42:2564–2573

    Article  CAS  PubMed  Google Scholar 

  36. Noh M (2012) Interleukin-17A increases leptin production in human bone marrow mesenchymal stem cells. Biochem Pharmacol 83:661–670

    Article  CAS  PubMed  Google Scholar 

  37. Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S et al (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 103:1345–1352

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Bennett CN, Longo KA, Wright WS, Suva LJ, Lane TF, Hankenson KD et al (2005) Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci U S A 102:3324–3329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Baek WY, de Crombrugghe B, Kim JE (2010) Postnatally induced inactivation of Osterix in osteoblasts results in the reduction of bone formation and maintenance. Bone 46:920–928

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Selmi C, Lu Q, Humble MC (2012) Heritability versus the role of the environment in autoimmunity. J Autoimmun 39:249–252

    Article  PubMed  Google Scholar 

  41. Ngalamika O, Zhang Y, Yin H, Zhao M, Gershwin ME, Lu Q (2012) Epigenetics, autoimmunity and hematologic malignancies: a comprehensive review. J Autoimmun 39:451–465

    Article  CAS  PubMed  Google Scholar 

  42. Miller FW, Alfredsson L, Costenbader KH, Kamen DL, Nelson LM, Norris JM et al (2012) Epidemiology of environmental exposures and human autoimmune diseases: findings from a National Institute of Environmental Health Sciences Expert Panel Workshop. J Autoimmun 39:259–271

    Article  PubMed Central  PubMed  Google Scholar 

  43. Miller FW, Pollard KM, Parks CG, Germolec DR, Leung PS, Selmi C et al (2012) Criteria for environmentally associated autoimmune diseases. J Autoimmun 39:253–258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Selmi C, Leung PS, Sherr DH, Diaz M, Nyland JF, Monestier M et al (2012) Mechanisms of environmental influence on human autoimmunity: a national institute of environmental health sciences expert panel workshop. J Autoimmun 39:272–284

    Article  PubMed  Google Scholar 

  45. Germolec D, Kono DH, Pfau JC, Pollard KM (2012) Animal models used to examine the role of the environment in the development of autoimmune disease: findings from an NIEHS Expert Panel Workshop. J Autoimmun 39:285–293

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Disclosure

The authors state that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana Caetano-Lopes.

Additional information

Joana Caetano-Lopes, Ana Rodrigues, Helena Canhão, and João E Fonseca contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caetano-Lopes, J., Rodrigues, A., Lopes, A. et al. Rheumatoid Arthritis Bone Fragility Is Associated With Upregulation of IL17 and DKK1 Gene Expression. Clinic Rev Allerg Immunol 47, 38–45 (2014). https://doi.org/10.1007/s12016-013-8366-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-013-8366-y

Keywords

Navigation