Skip to main content
Log in

Increased Availability of Tryptophan in 5-Methyltryptophan-Tolerant Shoots of Catharanthus roseus and Their Postharvest in vivo Elicitation Induces Enhanced Vindoline Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Ten 5-methyltryprophan (5-MT)-resistant multiple shoot culture lines in three genotypes of Catharanthus roseus were selected in vitro. The variant shoot lines displayed a differential threshold tolerance limit against the analogue stress, ranged from 20 to 70 mg/l 5-MT in the medium. The lines tolerant to 40 mg/l 5-MT stress were most stable and fast proliferating. All the selected lines in the presence of 5-MT stress recorded increased level of tryptophan in their free amino acid pool. Highest tryptophan accumulation occurred in lines P40, P30, D40, and N40 (i.e., 296.5, 241.0, 200.6, and 202.0 μg/g dry wt., respectively). A concomitant increase in the total alkaloid content (2.3–3.8 % dry wt.) under the analogue stress was also noticed in these lines when compared to 1.0–1.58 % dry wt. in the respective wild-type shoot maintained on a stress-free medium. The HPLC analysis of the alkaloid extracts of the 5-MT-tolerant lines grown under analogue stress also revealed vindoline as a major constituent with maximum accumulation in lines N40, N30, D30, D40, and P40 (0.046, 0.032, 0.034, and 0.022 % dry wt., respectively). The rooted shoots of 5-MT-tolerant lines were successfully acclimatized under glasshouse environment wherein they grew normally and set seeds. Flowering twigs or leaves excised from 1-year-old glasshouse-grown plants of 5-MT variant lines upon postharvest in vivo elicitation with 30 mg/l 5-MT or 5.0 mg/l tryptophan registered an eight-to-tenfold increment in their vindoline content within 24–48 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. van der Heijden, R., Jacobs, D. I., Snoeijer, W., Hallard, D., & Verpoorte, R. (2004). Current Medicinal Chemistry, 11, 607–628.

    Article  Google Scholar 

  2. Verma, P., Mathur, A. K., Srivastava, A., & Mathur, A. (2011). Protoplasma, 249, 255–268.

    Article  Google Scholar 

  3. Facchini, P. J., & De Luca, V. (2008). The Plant Journal, 54, 763–784.

    Article  CAS  Google Scholar 

  4. Zhao, J., & Verpoorte, R. (2007). Phytochemistry Reviews, 6, 435–457.

    Article  CAS  Google Scholar 

  5. Murata, J., Roepke, J., Gordon, H., & De Luca, V. (2008). The Plant Cell, 20, 524–542.

    Article  CAS  Google Scholar 

  6. Guirimand, G., Guihur, A., Pierre, P., Hericourt, F., et al. (2011). Journal of Plant Physiology, 168, 519–628.

    Article  Google Scholar 

  7. O’Keef, B. R., Mahady, G. B., Gills, J. J., & Beecher, C. W. W. (1997). Journal of Natural Products, 60, 261–264.

    Article  Google Scholar 

  8. Hernández-Domínguez, E., Campos-Tamayo, F., & Vázquez-Flota, F. (2004). Biotechnology Letters, 26, 671–674.

    Article  Google Scholar 

  9. Campos-Tamayo, F., Hernandez-Domínguez, E., & Vazquez-Flota, F. (2008). Annals of Botany, 102, 409–415.

    Article  CAS  Google Scholar 

  10. Whitmer, S., Van der Heijden, R., & Verpoorte, R. (2002). Plant Cell, Tissue and Organ Culture, 69, 85–93.

    Article  CAS  Google Scholar 

  11. Whitmer, S., Van der Heijden, R., & Verpoorte, R. (2002). Journal of Biotechnology, 96, 193–203.

    Article  CAS  Google Scholar 

  12. Goddijn, O. J. M., Pennings, E. J. M., Vander Helm, P., Schilperoort, R. A., et al. (1995). Transgenic Research, 4, 315–323.

    Article  CAS  Google Scholar 

  13. Canel, C., Lopes-Cardoso, M. I., Whitmer, S., Van der Fits, L., et al. (1998). Planta, 205, 414–419.

    Article  CAS  Google Scholar 

  14. Seth, R., & Mathur, A. K. (2005). Current Science, 89, 554–557.

    Google Scholar 

  15. Radwanski, E. R., & Last, R. L. (1995). The Plant Cell, 7, 921–934.

    CAS  Google Scholar 

  16. Li, J., & Last, R. L. (1996). Plant Physiology, 110, 51–59.

    Article  CAS  Google Scholar 

  17. Verma, P., Mathur, A. K., Massod, N., Luqman, S., & Shankar, K. (2012). Protoplasma. doi:10.1007/s00709-012-0423-5.

  18. Cho, H. J., Brotherton, J. E., Song, H. S., & Widhlm, J. M. (2000). Plant Physiology, 123, 1069–1076.

    Article  CAS  Google Scholar 

  19. Tozawa, Y., Hasegawa, H., Terakawa, T., & Wasaka, K. (2001). Plant Physiology, 126, 1493–1506.

    Article  CAS  Google Scholar 

  20. Hughes, E. H., Hong, S. B., Gibson, S. I., Shanks, J. V., & San, K. Y. (2004). Biotechnology and Bioengineering, 86, 718–727.

    Article  CAS  Google Scholar 

  21. Murashige, T., & Skoog, F. (1962). Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  22. Dalby, A., & Tsai, C. Y. (1975). Analytical Biochemistry, 63, 283–285.

    Article  CAS  Google Scholar 

  23. Hernandez-Dominguez, E., & Flota, F. V. (2006). Journal of Liquid Chromatography & Related Technologies, 29, 583–590.

    Article  CAS  Google Scholar 

  24. Gupta, M. M., Singh, D. V., Tripathi, A. K., Pandey, R., Verma, et al. (2005). Journal of Chromatographic Science, 43, 450–453.

    CAS  Google Scholar 

  25. Ikeda, M. (2006). Applied Microbiology and Biotechnology, 69, 615–626.

    Article  CAS  Google Scholar 

  26. Ishihara, A., Matsuda, F., Miyagawa, H., & Wakas, K. (2007). Metabolomics, 3, 319–334.

    Article  CAS  Google Scholar 

  27. Verma, P., Mathur, A. K., & Shankar, K. (2012). Plant Cell, Tissue and Organ Culture. doi:10.1007/s11240-012-0185-y.

  28. Islas, I., Loyola-Vargas, V. M., & Miranda-Ham, M. L. (1994). In Vitro Cellular and Developmental Biology—Plant, 30, 81–83.

    Article  Google Scholar 

  29. Whitmer, S., Canel, C., Hallard, D., Goncalves, C., & Verpoorte, R. (1998). Plant Physiology, 116, 853–857.

    Article  CAS  Google Scholar 

  30. Morgan, J. A., & Shanks, J. V. (2000). Journal of Biotechnology, 79, 137–145.

    Article  CAS  Google Scholar 

  31. Taha, H. S., El-Bahr, M. K., & Seif-El-Nasr, M. M. (2009). Australian Journal of Basic and Applied Sciences, 3, 3137–3144.

    CAS  Google Scholar 

  32. Widholm, J. M. (1977). Crop Science, 17, 597–600.

    Article  CAS  Google Scholar 

  33. Kim, D. S., Lee, I. S., Jang, C. S., Hyun, D. Y., Seo, Y. W., & Lee, Y. I. (2004). Euphytica, 135, 9–19.

    Article  CAS  Google Scholar 

  34. Kim, D. S., Jang, C. S., Kim, J. B., Lee, G. J., Kang, S. Y., Kim, W., & Seo, Y. W. (2009). Biologia Plantarum, 53, 444–450.

    Article  CAS  Google Scholar 

  35. Galili, G., & Hofgen, R. (2002). Metal Engineering, 4, 3–11.

    Article  CAS  Google Scholar 

  36. De Luca, V., & St-Pierre, B. (2000). Trends in Plant Science, 5, 168–173.

    Article  Google Scholar 

  37. Bohlmann, J., De Luca, Y., Eilert, U., & Martin, W. (1995). The Plant Journal, 7, 491–501.

    Article  CAS  Google Scholar 

  38. Peebles, C. A. M., Hong, S. B., Gibson, S. I., Shanks, J. V., & San, K. Y. (2006). Biotechnology and Bioengineering, 93, 534–540.

    Article  CAS  Google Scholar 

  39. Tanko, H., Carrier, D. J., Duan, L., & Clausen, E. (2005). Plant Genetic Resources, 3, 304–313.

    Article  CAS  Google Scholar 

  40. Khosroshahi, M. R. Z., Ashari, M. E., & Ershadi, A. (2007). Scientia Horticulturae, 114, 27–32.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support received from the Council of Scientific and Industrial Research (CSIR), Government of India, and New Delhi to carry out this work. We are also thankful to our colleague Mr. Krishna Gopal for his help during the glasshouse experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay K. Mathur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, P., Mathur, A.K. & Shanker, K. Increased Availability of Tryptophan in 5-Methyltryptophan-Tolerant Shoots of Catharanthus roseus and Their Postharvest in vivo Elicitation Induces Enhanced Vindoline Production. Appl Biochem Biotechnol 168, 568–579 (2012). https://doi.org/10.1007/s12010-012-9797-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9797-2

Keywords

Navigation