Skip to main content

Advertisement

Log in

Heterologous Expression of Transaldolase Gene Tal from Saccharomyces cerevisiae in Fusarium oxysporum for Enhanced Bioethanol Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The filamentous fungus Fusarium oxysporum is known for its ability to ferment xylose-producing ethanol. However, efficiency of xylose utilization and ethanol yield was low. In this study, the transaldolase gene from Saccharomyces cerevisiae has been successfully expressed in F. oxysporum by an Agrobacterium tumefaciens-mediated transformation method. The enzymatic activity of the recombinant fungus (cs28pCAM-Sctal4) was 0.195 times higher than that of the wild-type strain (cs28). The recombinant strain also exhibited a 28.83% increase in ethanol yield on xylose media compared to the parental strain. Enhanced ethanol production and a reduction in the biomass were observed during xylose fermentation. Ethanol yield from rice straw by simultaneous saccharification and fermentation with cs28pCAM-Sctal4 was 0.25 g g−1 of rice straw. The transgenic strain of F. oxysporum cs28pCAM-Sctal4 might therefore have potential applications in industrial bioenergy production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Panagiotou, G., Christakopoulos, P., & Olsson, L. (2005). Enzyme and Microbial Technology, 36, 693–699. doi:10.1016/j.enzmictec.2004.12.029.

    Article  CAS  Google Scholar 

  2. Panagiotou, G., Christakopoulos, P., Villas-Boasa, S. G., & Olsson, L. (2005). Enzyme and Microbial Technology, 36, 100–106. doi:10.1016/j.enzmictec.2004.07.009.

    Article  CAS  Google Scholar 

  3. Esperanza, G. G., Isabel, M., & Roncero, G. (2001). Current Genetics, 40, 268–275. doi:10.1007/s00294-001-0260-0.

    Article  Google Scholar 

  4. Ruiz-Roldán, M. C., Pietro, A. D., & Huertas-González, M. D. (1999). Molecular & General Genetics, 261, 530–536. doi:10.1007/s004380050997.

    Article  Google Scholar 

  5. Christakopoulos, P., Goodenough, P. W., & Kekos, D. (1994). European Journal of Biochemistry, 224, 378–385.

    Article  Google Scholar 

  6. Christakopoulos, P., Kekos, D., & Macris, B. J. (1995). Journal of Biotechnology, 39, 85–93. doi:10.1016/0168-1656(94)00147-5.

    Article  CAS  Google Scholar 

  7. Christakopoulos, P., Mamma, D., & Nerinckx, W. (1995). Archives of Biochemistry and Biophysics, 316, 428–33.

    Article  CAS  Google Scholar 

  8. Gianni, P., Dimitris, K., Basil, J. M., & Christakopoulos, P. (2003). Industrial Crops and Products, 18, 37–45. doi:10.1016/S0926-6690(03)00018-9.

    Article  Google Scholar 

  9. Senac, T., & Hahn-Hägerdal, B. (1991). Applied and Environmental Microbiology, 57, 1701–1706.

    CAS  Google Scholar 

  10. Schaaff, I., Hohmann, S., & Zimmermann, F. K. (1990). European Journal of Biochemistry, 188, 597–603.

    Article  CAS  Google Scholar 

  11. Fiki, A. E., Metabteb, G. E., Bellebna, C., Wartmann, T., Bode, R., Gellissen, G., et al. (2007). Applied Microbiology and Biotechnology, 74, 1292–1299. doi:10.1007/s00253-006-0785-8.

    Article  Google Scholar 

  12. Soderberg, T., & Alver, R. C. (2004). Archaea, 1, 255–262.

    Article  CAS  Google Scholar 

  13. Sprenger, G. A., Schörken, U., Sprenger, G., & Sahm, H. (1995). Journal of Bacteriology, 177, 5930–5936.

    CAS  Google Scholar 

  14. Pel, H. J., Winde, J. H., Archer, D. B., Dyer, P. S., Hofmann, G., Schaap, P. J., et al. (2007). Nature Biotechnology, 25, 221–231. doi:10.1038/nbt1282.

    Article  Google Scholar 

  15. Walfridsson, M., Hallborn, J., Penttlä, M., Keränen, S., & Hahn-hägerdal, B. (1995). Applied and Environmental Microbiology, 61, 4184–4190.

    CAS  Google Scholar 

  16. Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., & Picataggio, S. (1995). Science, 267, 240–243. doi:10.1126/science.267.5195.240.

    Article  CAS  Google Scholar 

  17. Lazo, G. R., Stein, P. A., & Ludwig, R. A. (1991). Nature Biotechnology, 9, 963–967. doi:10.1038/nbt1091-963.

    Article  CAS  Google Scholar 

  18. Covert, S. F., Kapoor, P., Lee, M. H., Briley, A., & Nairn, C. J. (2001). Mycological Research, 105, 259–264. doi:10.1017/S0953756201003872.

    Article  CAS  Google Scholar 

  19. Hajdukiewicz, P., Svab, Z., & Maliga, P. (1994). Plant Molecular Biology, 25, 989–994.

    Article  CAS  Google Scholar 

  20. Chen, P. Y., Wang, C. K., Song, S. C., & To, K. Y. (2003). Molecular Breeding, 11, 287–293. doi:10.1023/A:1023475710642.

    Article  CAS  Google Scholar 

  21. Mullins, E. D., Chen, X., Romaine, P., Raina, R., Geiser, D. M., & Kang, S. (2001). Phytopathology, 91, 173–180.

    Article  CAS  Google Scholar 

  22. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). Nucleic Acids Research, 22, 4673–4680.

    Article  CAS  Google Scholar 

  23. Kumar, S., Dudley, J., Nei, M., & Tamura, K. (2008). Briefing in Bioinformatics, 9, 299–306. doi:10.1093/bib/bbn017.

    Article  CAS  Google Scholar 

  24. Page, R. D. M. (1996). Computer Application in the Bioscience, 12, 357–358.

    CAS  Google Scholar 

  25. Livak, K. J., & Schmittgen, T. D. (2001). Methods, 25, 402–408. doi:10.1006/meth.2001.1262.

    Article  CAS  Google Scholar 

  26. Wang, W., Tai, F. J., & Chen, S. N. (2008). Journal of Separation Science, 31, 2032–2039. doi:10.1002/jssc.200800087.

    Article  CAS  Google Scholar 

  27. Bradforda, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  Google Scholar 

  28. Zhao, L., Zhang, X., & Tan, T. (2008). Biomass and Bioenergy. doi:10.1016/j.biombioe.2008.02.011.

  29. Fujii, M., Homma, T., Ooshima, K., & Taniguchi, M. (1991). Applied Biochemistry and Biotechnology, 28–29, 145–156. doi:10.1007/BF02922596.

    Article  Google Scholar 

  30. Huang, X. M., Yang, Q., Liu, Z. H., Fan, J. X., & Chen, X. L. (2010). Applied Biochemistry and Biotechnology, 162, 103–115. doi:10.1007/s12010-009-8700-2.

    Article  CAS  Google Scholar 

  31. Christakopoulos, P., Mamma, D., Kekos, D., & Macris, B. J. (1999). World Journal of Microbiology & Biotechnology, 15, 443–446. doi:10.1023/A:1008936204368.

    Article  CAS  Google Scholar 

  32. Christakopoulos, P., Katapodis, P., Hatzinikolaou, D. G., Kekos, D., & Macris, B. J. (2000). Applied Biochemistry and Biotechnology, 87, 127–133. doi:10.1385/ABAB:87:2:127.

    Article  CAS  Google Scholar 

  33. Panagiotou, G., Kekos, D., Macris, B. J., & Christakopoulos, P. (2003). Industrial Crops and Products, 18, 37–45. doi:10.1016/S0926-6690(03)00018-9.

    Article  CAS  Google Scholar 

  34. Tao, S., Peng, L., Beihui, L., Deming, L., & Zuohu, L. (1998). Bioprocess Engineering, 18, 379–381. doi:10.1007/PL00008997.

    CAS  Google Scholar 

  35. Cheilas, T., Stoupis, T., Christakopoulos, P., Katapodis, P., Mamma, D., Hatzinikolau, D. G., et al. (2000). Process Biochemistry, 35, 557–561. doi:10.1016/S0032-9592(99)00103-X.

    Article  CAS  Google Scholar 

  36. Pavarina, E. C., & Durrant, L. R. (2002). Applied Biochemisty and Biotechnology, 98–100, 663–677. doi:10.1385/ABAB:98-100:1-9:663.

    Article  Google Scholar 

  37. Panagiotou, G., Villas-Bôas, S. G., Christakopoulos, P., Nielsen, J., & Olsson, L. (2005). Journal of Biotechnology, 115, 425–434. doi:10.1016/j.jbiotec.2004.09.011.

    Article  CAS  Google Scholar 

  38. Panagiotou, G., & Christakopoulos, P. (2004). Journal of Bioscience and Bioengineering, 97, 299–304. doi:10.1016/S1389-1723(04)70209-1.

    CAS  Google Scholar 

  39. Gouka, R. J., Gerk, C., Hooykaas, J. J., Wouter, C. T., & Groot, J. A. (1999). Nature Biotechnology, 17, 598–601. doi:10.1038/9915.

    Article  CAS  Google Scholar 

  40. Zwiers, L. H., & Waard, M. A. D. (2001). Current Genetics, 39, 388–393.

    Article  CAS  Google Scholar 

  41. Hanif, M., Pardo, A. G., Gorfer, M., & Raudaskoski, M. (2002). Current Genetics, 41, 183–188. doi:10.1007/s00294-002-0297-8.

    Article  CAS  Google Scholar 

  42. Kern, M. F., Maraschin, S. F., Vom Endt, D., Schrank, A., Vainstein, M. H., & Pasquali, G. (2010). Applied Biochemistry and Biotechnology, 160. doi:10.1007/s12010-009-8701-1.

  43. Sun, L., Cai, H., Xu, W., Hu, Y., & Lin, Z. (2002). Molecular Biotechnology, 20, 239–244. doi:10.1385/MB:20:3:239.

    Article  CAS  Google Scholar 

  44. Meinander, N. Q., Boels, I., & Hahn-Hägerdal, B. (1999). Bioresource Technology, 68, 79–87.

    Article  CAS  Google Scholar 

  45. Panagiotou, G., Pachidou, F., Petroutsos, D., Olsson, L., & Christakopoulos, P. (2008). Bioresource Technology, 99, 7397–7401. doi:10.1016/j.biortech.2008.01.017.

    Article  CAS  Google Scholar 

  46. Kumar, P. K. R., Singh, A., & Schügerl, K. (1991). Applied Microbiology and Biotechnology, 34, 570–575. doi:10.1007/BF00167900.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by National 863 Research Program (2006AA10Z424) and National Key Technology R&D Program of China during the eleventh Five-Year Plan period (2006BAD07A01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Zhu Song or Qian Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, JX., Yang, XX., Song, JZ. et al. Heterologous Expression of Transaldolase Gene Tal from Saccharomyces cerevisiae in Fusarium oxysporum for Enhanced Bioethanol Production. Appl Biochem Biotechnol 164, 1023–1036 (2011). https://doi.org/10.1007/s12010-011-9191-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9191-5

Keywords

Navigation