Skip to main content

Advertisement

Log in

Bioethanol production by heterologous expression of two individual 1-FEH genes from Helianthus tuberosus in Saccharomyces cerevisiae 6525

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Bioethanol is a promising renewable source of energy. The heterologous expression of inulinases from microorganisms in the yeast Saccharomyces cerevisiae improves ethanol production from inulin. Fructan exohydrolases (FEHs) from fructan-rich plants hydrolyze fructofuranosyl units in inulin to produce fructose. Here, we examined whether the heterologous expression of FEHs could also improve ethanol production in yeast. First, we expressed two Jerusalem artichoke (Helianthus tuberosus) FEH genes (Ht1-FEH I and II) in Pichia pastoris yeast X-33 to examine the biochemical properties of the encoded enzymes. Ht1-FEH I was relatively stable at pH 4–8 and 4–35 °C and Ht1-FEH II was relatively stable at pH 4–8 and 4–40 °C. The K m and V m values of Ht1-FEH I were 0.68 and 0.00129 mg/min, while those of Ht1-FEH II were 0.92 and 0.0048 mg/min, respectively. The enzyme activities were affected by metal ions and protein inhibitors. Additionally, the transgenic expression of Ht1-FEH I and Ht1-FEH II in S. cerevisiae 6525 at pH 6, 30 °C resulted in 25 and 27 % increases in ethanol production compared to the non-FEH-transformed control (CK), respectively. The efficiency of ethanol production was greater in yeast expressing plant FEHs than in yeast expressing inulinases derived from some microorganisms. Thus, plant FEHs have potential applications in bioethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ghobadian B (2012) Liquid biofuels potential and outlook in Iran. Renew Sust Energ Rev 16(7):4379–4384. doi:10.1016/j.rser.2012.05.013

    Article  Google Scholar 

  2. Zhang T, Chi Z, Zhao CH, Chi ZM, Gong F (2010) Bioethanol production from hydrolysates of inulin and the tuber meal of Jerusalem artichoke by Saccharomyces sp. W0. Bioresour Technol 101(21):8166–8170. doi:10.1016/j.biortech.2010.06.013

    Article  CAS  PubMed  Google Scholar 

  3. Ritsema T, Smeekens S (2003) Fructans: beneficial for plants and humans. Curr Opin Plant Biol 6(3):223–230. doi:10.1016/S1369-5266(03)00034-7

    Article  CAS  PubMed  Google Scholar 

  4. Leach JD, Sobolik KD (2010) High dietary intake of prebiotic inulin-type fructans in the prehistoric Chihuahuan Desert. Br J Nutr 103(11):1558–1561. doi:10.1017/S0007114510000966

    Article  CAS  PubMed  Google Scholar 

  5. Chi ZM, Chi Z, Zhang T, Liu GL, Yue LX (2009) Inulinase-expressing microorganisms and applications of inulinases. Appl Microbiol Biotechnol 82(2):211–220. doi:10.1007/s00253-008-1827-1

    Article  CAS  PubMed  Google Scholar 

  6. Xu H, Liang M, Xu L, Li H, Zhang X, Kang J, Zhao Q, Zhao H (2015) Cloning and functional characterization of two abiotic stress-responsive Jerusalem artichoke (Helianthus tuberosus) fructan 1-exohydrolases (1-FEHs). Plant Mol Biol 87(1–2):81–98. doi:10.1007/s11103-014-0262-1

    Article  CAS  PubMed  Google Scholar 

  7. Van den Ende W, De Coninck B, Clerens S, Vergauwen R, Van Laere A (2003) Unexpected presence of fructan 6-exohydrolases (6-FEHs) in non-fructan plants: characterization, cloning, mass mapping and functional analysis of a novel ‘cell-wall invertase-like’ specific 6-FEH from sugar beet (Beta vulgaris L.). Plant J 36(5):697–710. doi:10.1046/j.1365-313X.2003.01912.x

    Article  PubMed  Google Scholar 

  8. Livingston DP, Hincha DK, Heyer AG (2009) Fructan and its relationship to abiotic stress tolerance in plants. Cell Mol Life Sci 66(13):2007–2023. doi:10.1007/s00018-009-0002-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Van den Ende W, De Coninck B, Van Laere A (2004) Plant fructan exohydrolases: a role in signaling and defense? Trends Plant Sci 9(11):523–528. doi:10.1016/j.tplants.2004.09.008

    Article  PubMed  Google Scholar 

  10. Garcia PMA, Asega AF, Silva EA, Carvalho MAM (2011) Effect of drought and re-watering on fructan metabolism in Vemonia herbacea (Vell.) Rusby. Plant Physiol Biochem 49(6):664–670. doi:10.1016/j.plaphy.2011.03.014

    Article  CAS  PubMed  Google Scholar 

  11. Asega AF, do Nascimento JRO, Carvalho MAM (2011) Increased expression of fructan 1-exohydrolase in rhizophores of Vernonia herbacea during sprouting and exposure to low temperature. J Plant Physiol 168(6):558–565. doi:10.1016/j.jplph.2010.09.002

    Article  CAS  PubMed  Google Scholar 

  12. Portes MT, Figueiredo-Ribeiro RDL, de Carvalho MAM (2008) Low temperature and defoliation affect fructan-metabolizing enzymes in different regions of the rhizophores of Vernonia herbacea. J Plant Physiol 165(15):1572–1581. doi:10.1016/j.jplph.2008.01.004

    Article  CAS  PubMed  Google Scholar 

  13. Nakamura T, Ogata Y, Hamada S, Ohta K (1996) Ethanol production from Jerusalem artichoke tubers by Aspergillus niger and Saccharomyces cerevisiae. J Ferment Bioeng 81(6):564–566

    Article  CAS  Google Scholar 

  14. Zhang T, Chi Z, Chi ZM, Parrou JL, Gong F (2010) Expression of the inulinase gene from the marine-derived Pichia guilliermondii in Saccharomyces sp W0 and ethanol production from inulin. Microb Biotechnol 3(5):576–582. doi:10.1111/j.1751-7915.2010.00175.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang J-M, Zhang T, Chi Z, Liu G-L, Chi Z-M (2011) 18S rDNA integration of the exo-inulinase gene into chromosomes of the high ethanol producing yeast Saccharomyces sp. W0 for direct conversion of inulin to bioethanol. Biomass Bioenergy 35(7):3032–3039. doi:10.1016/j.biombioe.2011.04.003

    Article  CAS  Google Scholar 

  16. Liu GL, Fu GY, Chi Z, Chi ZM (2014) Enhanced expression of the codon-optimized exo-inulinase gene from the yeast Meyerozyma guilliermondii in Saccharomyces sp. W0 and bioethanol production from inulin. Appl Microbiol Biotechnol 98(21):9129–9138. doi:10.1007/s00253-014-6079-7

    Article  CAS  PubMed  Google Scholar 

  17. Hong SJ, Kim HJ, Kim JW, Lee DH, Seo JH (2015) Optimizing promoters and secretory signal sequences for producing ethanol from inulin by recombinant Saccharomyces cerevisiae carrying Kluyveromyces marxianus inulinase. Bioprocess Biosyst Eng 38(2):263–272. doi:10.1007/s00449-014-1265-7

    Article  CAS  PubMed  Google Scholar 

  18. Yun YJCJW (2002) Purification and characterization of an endoinulinase from Xanthomonas oryzae No.5. Process Biochem 37:1325–1331

    Article  Google Scholar 

  19. Gill PK, Manhas RK, Singh J, Singh P (2004) Purification and characterization of an exoinulinase from Aspergillus fumigatus. Appl Biochem Biotechnol 117(4):19–32

    Article  CAS  PubMed  Google Scholar 

  20. Gao L, Chi Z, Sheng J, Wang L, Li J, Gong F (2007) Inulinase-producing marine yeasts: evaluation of their diversity and inulin hydrolysis by their crude enzymes. Microb Ecol 54(4):722–729. doi:10.1007/s00248-007-9231-4

    Article  CAS  PubMed  Google Scholar 

  21. Wang L, Du YC, Meng XF, Long XH, Liu ZP, Shao H (2013) Direct production of bioethanol from Jerusalem artichoke inulin by gene-engineering Saccharomyces cerevisiae 6525 with exoinulinase gene. Plant Biosyst Int J Dealing Asp Plant Biol 148(1):133–139. doi:10.1080/11263504.2013.856961

    Google Scholar 

  22. Van den Ende W, Michiels A, De Roover J, Verhaert P, Van Laere A (2000) Cloning and functional analysis of chicory root fructan1-exohydrolase I (1-FEH I): a vacuolar enzyme derived from a cell-wall invertase ancestor? Mass fingerprint of the 1-FEH I enzyme. Plant J 24(4):447–456. doi:10.1046/j.1365-313x.2000.00890.x

    Article  PubMed  Google Scholar 

  23. Van den Ende W, Lammens W, Van Laere A, Schroeven L, Le Roy K (2009) Donor and acceptor substrate selectivity among plant glycoside hydrolase family 32 enzymes. FEBS J 276(20):5788–5798. doi:10.1111/j.1742-4658.2009.07316.x

    Article  PubMed  Google Scholar 

  24. Kawakami A, Yoshida M (2005) Fructan : fructan 1-fructosyltransferase, a key enzyme for biosynthesis of graminan oligomers in hardened wheat. Planta 223(1):90–104. doi:10.1007/s00425-005-0054-6

    Article  CAS  PubMed  Google Scholar 

  25. Yuan B, Wang SA, Li FL (2013) Improved ethanol fermentation by heterologous endoinulinase and inherent invertase from inulin by Saccharomyces cerevisiae. Bioresour Technol 139:402–405. doi:10.1016/j.biortech.2013.04.076

    Article  CAS  PubMed  Google Scholar 

  26. Martel CM, Warrilow AG, Jackson CJ, Mullins JG, Togawa RC, Parker JE, Morris MS, Donnison IS, Kelly DE, Kelly SL (2010) Expression, purification and use of the soluble domain of Lactobacillus paracasei beta-fructosidase to optimise production of bioethanol from grass fructans. Bioresour Technol 101(12):4395–4402. doi:10.1016/j.biortech.2010.01.084

    Article  CAS  PubMed  Google Scholar 

  27. Gao W, Bao Y, Liu Y, Zhang X, Wang J, An L (2009) Characterization of thermo-stable endoinulinase from a new strain Bacillus smithii T7. Appl Biochem Biotechnol 157(3):498–506. doi:10.1007/s12010-008-8313-1

    Article  CAS  PubMed  Google Scholar 

  28. Guo L, Zhang J (2013) Consolidated bioprocessing of highly concentrated Jerusalem artichoke tubers for simultaneous saccharification and ethanol fermentation. Biotechnol Bioeng 110:2606–2615. doi:10.1002/bit.24929/abstract

    Article  CAS  PubMed  Google Scholar 

  29. Arroyo-Lopez FN, Orlic S, Querol A, Barrio E (2009) Effects of temperature, pH and sugar concentration on the growth parameters of Saccharomyces cerevisiae, S. kudriavzevii and their interspecific hybrid. Int J Food Microbiol 131(2–3):120–127. doi:10.1016/j.ijfoodmicro.2009.01.035

    Article  CAS  PubMed  Google Scholar 

  30. Narendranath NV, Power R (2005) Relationship between pH and medium dissolved solids in terms of growth and metabolism of lactobacilli and Saccharomyces cerevisiae during ethanol production. Appl Environ Microbiol 71(5):2239–2243. doi:10.1128/AEM.71.5.2239-2243.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stefanini I, Dapporto L, Legras JL, Calabretta A, Di Paola M, De Filippo C, Viola R, Capretti P, Polsinelli M, Turillazzi S, Cavalieri D (2012) Role of social wasps in Saccharomyces cerevisiae ecology and evolution. Proc Natl Acad Sci U S A 109(33):13398–13403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Singh RS, Bhermi HK (2008) Production of extracellular exoinulinase from Kluyveromyces marxianus YS-1 using root tubers of Asparagus officinalis. Bioresour Technol 99(15):7418–7423. doi:10.1016/j.biortech.2008.01.004

    Article  CAS  PubMed  Google Scholar 

  33. Abu El-souod SM, Mohamed TM, Ali EMM, El-badry MO, El-keiy MM (2014) Partial purification of extracellular exo-inulinase from Ulocladium atrum. J Genet Eng Biotechnol 12(1):15–20. doi:10.1016/j.jgeb.2014.04.001

    Article  Google Scholar 

  34. An K, Hu F, Bao J (2013) Simultaneous saccharification of inulin and starch using commercial glucoamylase and the subsequent bioconversion to high titer sorbitol and gluconic acid. Appl Biochem Biotechnol 171(8):2093–2104. doi:10.1007/s12010-013-0278-z

    Article  CAS  PubMed  Google Scholar 

  35. Sheng J, Chi Z, Gong F, Li J (2007) Purification and characterization of extracellular inulinase from a marine yeast cryptococcus aureus G7a and Inulin hydrolysis by the purified inulinase. Appl Biochem Biotechnol 144(2):111–121. doi:10.1007/s12010-007-8025-y

    Article  Google Scholar 

  36. Onodera S, Shiomi N (1988) Purification and substrate specificity of endo-type inulinase from Penicillium purpurogenum. Agric Biol Chem 52(10):2569–2576. doi:10.1080/00021369.1988.10869080

    CAS  Google Scholar 

  37. Li Y, Liu GL, Chi ZM (2013) Ethanol production from inulin and unsterilized meal of Jerusalem artichoke tubers by Saccharomyces sp. W0 expressing the endo-inulinase gene from Arthrobacter sp. Bioresour Technol 147:254–259. doi:10.1016/j.biortech.2013.08.043

    Article  CAS  PubMed  Google Scholar 

  38. Martel CM, Parker JE, Jackson CJ, Warrilow AG, Rolley N, Greig C, Morris SM, Donnison IS, Kelly DE, Kelly SL (2011) Expression of bacterial levanase in yeast enables simultaneous saccharification and fermentation of grass juice to bioethanol. Bioresour Technol 102(2):1503–1508. doi:10.1016/j.biortech.2010.07.099

    Article  CAS  PubMed  Google Scholar 

  39. Yuan W, Zhao X, Chen L, Bai F (2013) Improved ethanol production in Jerusalem artichoke tubers by overexpression of inulinase gene in Kluyveromyces marxianus. Biotechnol Bioprocess Eng 18(4):721–727. doi:10.1007/s12257-013-0026-9

    Article  CAS  Google Scholar 

  40. Lim SH, Ryu JM, Lee H, Jeon JH, Sok DE, Choi ES (2011) Ethanol fermentation from Jerusalem artichoke powder using Saccharomyces cerevisiae KCCM50549 without pretreatment for inulin hydrolysis. Bioresour Technol 102(2):2109–2111. doi:10.1016/j.biortech.2010.08.044

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Kathleen Farquharson for valuable comments on the manuscript revision. This research was supported by grants from the National Natural Science Foundation of China (31201842), the Social Development Project in Jiangsu Province (BE2015681),the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD program, 809001), Fundamental Research Funds for the Central Universities (KYZ201516), and Jiangsu Agricultural Science and Technology Innovation Fund (CX(13)5072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxiang Liang.

Ethics declarations

Conflict of interest

All authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Xu, H., Fu, R. et al. Bioethanol production by heterologous expression of two individual 1-FEH genes from Helianthus tuberosus in Saccharomyces cerevisiae 6525. Bioenerg. Res. 9, 884–893 (2016). https://doi.org/10.1007/s12155-016-9742-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-016-9742-2

Keywords

Navigation