Skip to main content

Advertisement

Log in

Cloning and Heterologous Expression of a Novel Endoglucanase Gene egVIII from Trichoderma viride in Saccharomyces cerevisiae

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Endoglucanase is a major cellulolytic enzyme produced by the fungus Trichoderma viride. The 1,317 bp cDNA of endoglucanase gene egVIII was cloned from T. viride AS3.3711, encoding a 438 amino acid protein with a calculated molecular mass of 46.86 kDa and isoelectric point of 4.32. Sequence analysis suggested that EGVIII belonged to the glycosyl hydrolase family 5. The N-terminal region of EGVIII contains a signal peptide sequence of 19 amino acid residues, indicating that it is an extracellular enzyme. Transcription of the egVIII gene in T. viride AS3.3711 can be induced by carboxymethyl cellulose sodium (CMC-Na), sucrose, microcrystalline cellulose, and corn stalk, and inhibited by glucose and fructose. The α-mating factor signal can effectively enhance the secretion of the recombinant EGVIII in Saccharomyces cerevisiae, as demonstrated by the enzymatic activity of recombinant yeast IpYEMα-xegVIII in the supernatant, which was 0.86 times higher than that of the IpYES2-egVIII. Recombinant endoglucanase EGVIII showed optimal activity at a temperature of 60°C and pH of 6.0. It was stable when incubated from 35°C to 70°C for 1 h. The enzymatic activity of recombinant EGVIII was stable at a pH 3.0 to 7.5 at 50°C and reached the highest level at 0.174U when activated by 75 mM of Zn2+. The Michaelis–Menten constant (Km) and Kcat values for CMC-Na and cellotriose hydrolysis were 3.82 mg/ml, 9.56 s−1 and 1.75 mg/ml, 7.08 s−1, respectively. Transgenic yeast strain IpYEMα-xegVIII might be useful for renewable fuels industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wyman, C. E. (2003). Biotechnology Progress, 19, 254–262. doi:10.1021/bp025654l.

    Article  CAS  Google Scholar 

  2. Green, N., Celik, E.F., Dale, B., Jachson, M., Jayawardhana, K., Jin, H., et al. (2004). Natural Resources Defense Council, 12. http://www.nrdc.org/air/energy/biofuels/biofuels.pdf.

  3. Qin, Y. Q., Wei, X. M., Liu, X. M., Wang, T. H., & Qu, Y. B. (2008). Protein Expression and Purification, 58, 162–167. doi:10.1016/j.pep.2007.09.004.

    Article  CAS  Google Scholar 

  4. Saloheimo, M., Nakari-setala, T., Tenkanen, M., & Enkanen, M. (1997). European Journal of Biochemistry, 24, 584–591. doi:10.1111/j.1432-1033.1997.00584.x.

    Article  Google Scholar 

  5. Van Arsdell, J. N., Kwok, S., Schweickart, V. L., Ladner, M. B., Gelfand, D. H., & Innis, M. A. (1987). Biotechnology, 5, 60–64. doi:10.1038/nbt0187-60.

    Article  Google Scholar 

  6. Ekino, K. K., Goto, M., & Furukawa, K. (1999). Bioscience, Biotechnology, and Biochemistry, 63, 1714–1720. doi:10.1271/bbb.63.1714.

    Article  Google Scholar 

  7. Yao, Q., Sun, T. T., Chen, G. J., & Liu, W. F. (2007). Biotechnology Letters, 29, 1243–1247. doi:10.1007/s10529-007-9379-5.

    Article  CAS  Google Scholar 

  8. Parvez, S., Rajoka, M. I., Fariha, F., & Malik, K. A. (1994). Folia microbiologica, 39, 251–254. doi:10.1007/BF02814307.

    Article  CAS  Google Scholar 

  9. Penttilä, M. E., André, L., Lehtovaara, P., Bailey, M., Teeri, T. T., & Knowles, J. K. (1988). Gene, 63, 103–112. doi:10.1016/0378-1119(88)90549-5.

    Article  Google Scholar 

  10. Takada, G., Kawaguchi, T., Sumitani, J., & Arai, M. (1998). Bioscience, Biotechnology, and Biochemistry, 62, 1615–1618. doi:10.1271/bbb.62.1615.

    Article  CAS  Google Scholar 

  11. Zhang, X. Z., Yan, X., Cui, Z. L., & Lee, S. P. (2006). ACTA Microbiologica Sinica, 46, 526–530.

    CAS  Google Scholar 

  12. Adams, A., Gottschling, D. E., Kaiser, C. A., & Stearns, T. (1997). Methods in yeast genetics: a cold spring harbor course manual (pp. 139–159). Cold Spring Harbor, NY: Cold Spring Harbor Press.

    Google Scholar 

  13. Wei, Q. (1999). The guide of molecular biology experiment (pp. 12–25). Harbin: Higher Education Press.

    Google Scholar 

  14. Thomson, J., Gibons, T., Plewniak, F., Jeanmougin, F., & Higgins, D. (1997). Nucleic Acids Research, 24, 4876–4882. http://nar.oxfordjournals.org/cgi/content/full/25/24/4876.

    Article  Google Scholar 

  15. Van Wyk, J. P. H., & Mohulatsi, M. (2003). Bioresource Technology, 86, 21–23. doi:10.1016/S0960-8524(02)00130-X.

    Article  Google Scholar 

  16. Krautwurst, H., Bazaes, S., González, F. D., Jabalquinto, A. M., Frey, P. A., & Cardemil, E. (1998). Biochemistry, 37, 6295–6302. doi:10.1021/bi971515e.

    Article  CAS  Google Scholar 

  17. Meinke, A., Damude, H. G., Tomme, P., Kwan, E., Kilburn, D. G., Miller, R. C., Jr., et al. (1995). Journal of Biological Chemistry, 270, 4383–4386. http://www.jbc.org/cgi/reprint/270/9/4383.

    Article  CAS  Google Scholar 

  18. Bradford, M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  19. Coutinho, P. M., & Henrissat, B. (1999). The modular structure of celluloses and other carbohydrate-active enzymes: an integrated database approach. In K. Ohmiya, K. Hayashi, K. Sakka, Y. Kobayashi, S. Karita & T. Kimura (Eds.), Genetics, biochemistry and ecology of cellulose degradation (pp. 15–23). Tokyo: Uni. Publishers.

    Google Scholar 

  20. Udenfriend, S., & Kodukula, K. (1995). Methods in Enzymology, 250, 571–582. doi:10.1016/0076-6879(95)50098-7.

    Article  CAS  Google Scholar 

  21. Zhou, J., Wang, Y. H., Chu, J., Zhuang, Y. P., Zhang, S. L., & Yin, P. (2008). Bioresource Technology, 99, 6826–6833. doi:10.1016/j.biortech.2008.01.077.

    Article  CAS  Google Scholar 

  22. Cho, K. M., Hong, S. J., Math, R. K., Islam, S. M., Kim, J. O., Lee, Y. H., et al. (2008). Journal of Basic Microbiology, 48, 464–472. doi:10.1002/jobm.200700281.

    Article  CAS  Google Scholar 

  23. Tsai, C. F., Qiu, X., & Liu, J. H. (2003). Anaerobe, 9, 131–140. doi:10.1016/S1075-9964(03)00087-8.

    Article  CAS  Google Scholar 

  24. Sasvári, Z., Posta, K., & Hornok, L. (2008). Acta Microbiologica et Immunologica Hungarica, 55, 437–446.

    Article  Google Scholar 

  25. Saloheimo, M., Nakari-Setala, T., Tenkanen, M., & Penttila, M. (1997). European Journal of Biochemistry, 249, 584–591. doi:10.1111/j.1432-1033.1997.00584.x.

    Article  CAS  Google Scholar 

  26. Foreman, P. K., Brown, D., Dankmeyer, L., Dean, R., Diener, S., Dunn-Coleman, N. S., et al. (2003). Journal of Biological Chemistry, 278, 31988–31997. doi:10.1074/jbc.M304750200.

    Article  Google Scholar 

  27. Saha, B. C. (2004). Process Biochemistry, 39, 1871–1876. doi:10.1016/j.procbio.2003.09.013.

    Article  CAS  Google Scholar 

  28. Ding, S. J., Ge, W., & Buswell, J. A. (2002). Enzyme and Microbial Technology, 31, 621–626. doi:10.1016/S0141-0229(02)00168-0.

    Article  CAS  Google Scholar 

  29. Li, D. C., Lu, M., Li, Y. L., & Lu, J. (2003). Enzyme and Microbial Technology, 33, 932–937. doi:10.1016/S0141-0229(03)00245-X.

    Article  CAS  Google Scholar 

  30. Saad, R. R., & Fawzi, E. M. (2004). New Egypt. Journal of Microbiology, 8, 1–9.

    CAS  Google Scholar 

  31. Jabbar, A., Rashid, M. H., Javed, M. R., Perveen, R., & Malana, M. A. (2008). Journal of Industrial Microbiology & Biotechnology, 35, 515–524. doi:10.1007/s10295-008-0310-4.

    Article  CAS  Google Scholar 

  32. Saleem, M., Rashid, M. H., Jabbar, A., Perveen, R., Khalid, A. M., & Rajoka, M. I. (2005). Process Biochemistry, 40, 849–855. doi:10.1016/j.procbio.2004.02.026.

    Article  CAS  Google Scholar 

  33. Okada, G., & Nisizawa, K. (1975). Journal of Biochemistry (Tokyo), 78, 297–306.

    CAS  Google Scholar 

  34. Okada, G. (1976). Journal of Biochemistry (Tokyo), 80, 913–922.

    CAS  Google Scholar 

  35. Ricardo, M., Carmen, A., Maria, P. C., Juan, M. D., Isabel, M., Goran, P., et al. (1993). Journal of Biochemistry, 289, 867–873.

    Google Scholar 

  36. Kang, H. A., Nam, S. W., Kwon, K. S., Chung, B. H., & Yu, M. H. (1996). Journal of Biotechnology, 48, 15–24. doi:10.1016/0168-1656(96)01391-0.

    Article  CAS  Google Scholar 

  37. Wonganu, B., Pootanakit, K., Boonyapakron, K., Champreda, V., Tanapongpipat, S., & Eurwilaichitr, L. (2008). Protein Expression and Purification, 58, 78–86. doi:10.1016/j.pep.2007.10.022.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the projects of the Key Science and Technology Program of Heilongjiang province (GC05C209) and National Key Technology R&D Program of China during the 11th 5-year plan period (2006BAD07A00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, XM., Yang, Q., Liu, ZH. et al. Cloning and Heterologous Expression of a Novel Endoglucanase Gene egVIII from Trichoderma viride in Saccharomyces cerevisiae . Appl Biochem Biotechnol 162, 103–115 (2010). https://doi.org/10.1007/s12010-009-8700-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8700-2

Keywords

Navigation