Skip to main content
Log in

Patient-specific instrumentation improves tibial component rotation in TKA

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To compare the femoral and tibial components rotational alignment in total knee arthroplasty (TKA) performed either with conventional or with patient-specific instrumentation.

Methods

Forty-five patients underwent primary TKA and were prospectively randomized into two groups: 22 patients into the conventional instrumentation group (group A) and 23 patients into the Signature™ patient-specific instrumentation group (group B). All patients underwent computed tomography of the operated knee in the first week after surgery to measure the components rotation.

Results

The femoral component rotation was 0.0° (−0.25, 1.0) in group A, and 0.0° (0.0, 1.0) in group B. The tibial component rotation was −16.0° (−18.5, 11.8) in group A, and −16.0° (−19.0, −14.0) in group B. There were no significant differences between the two groups in tibial and femoral components rotation. The difference between the tibial component rotation and the neutral tibial rotation was similar in both groups [2.0° (−0.5, 6.3) in group A and 2.0° (−1.0, 4.0) in group B], but the dispersion around the median was different between the two groups. The amplitude of the difference between tibial rotation and neutral position was 27° (−13, 14) in group A and 9° (−3, 6) in group B.

Conclusions

There is a smaller chance of internal malrotation of the tibial component with the Signature™ patient-specific instrumentation system, with less dispersion and amplitude of the tibial component rotation around the neutral position.

Level of evidence

II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barrack RL, Schrader T, Bertot AJ, Wolfe MW, Myers L (2001) Component rotation and anterior knee pain after total knee arthroplasty. Clin Orthop Relat Res 392:46–55

    Article  PubMed  Google Scholar 

  2. Bauwens K, Matthes G, Wich M, Gebhard F, Hanson B, Ekkernkamp A, Stengel D (2007) Navigated total knee replacement: a meta-analysis. J Bone Joint Surg Am 89:261–269

    Article  PubMed  Google Scholar 

  3. Berger RA, Crossett LS, Jacobs JJ, Rubash HE (1998) Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res 356:144–153

    Article  PubMed  Google Scholar 

  4. Blakeney WG, Khan RJ, Wall SJ (2011) Computer-assisted techniques versus conventional guides for component alignment in total knee arthroplasty: a randomized controlled trial. J Bone Joint Surg Am 93:1377–1384

    Article  PubMed  Google Scholar 

  5. Boldt JG, Stiehl JB, Hodler J, Zanetti M, Munzinger U (2006) Femoral component rotation and arthrofibrosis following mobile-bearing total knee arthroplasty. Int Orthop 30:420–425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Brin YS, Nikolaou VS, Joseph L, Zukor DJ, Antoniou J (2011) Imageless computer assisted versus conventional total knee replacement: a Bayesian meta-analysis of 23 comparative studies. Int Orthop 35:331–339

    Article  PubMed Central  PubMed  Google Scholar 

  7. Chandrasekaran S, Molnar RB (2008) Minimally invasive imageless computer-navigated knee surgery: initial results. J Arthroplasty 23:441–445

    Article  PubMed  Google Scholar 

  8. Clayton ML, Thirupathi R (1982) Patellar complications after total condylar arthroplasty. Clin Orthop Relat Res 170:152–155

    PubMed  Google Scholar 

  9. Dennis DA, Clayton ML, O’Donnell S, Mack RP, Stringer EA (1992) Posterior cruciate condylar total knee arthroplasty. Average 11-year follow-up evaluation. Clin Orthop Relat Res 281:168–176

    PubMed  Google Scholar 

  10. Desai AS, Dramis A, Kendoff D, Board TN (2011) Critical review of the current practice for computer-assisted navigation in total knee replacement surgery: cost-effectiveness and clinical outcome. Curr Rev Musculoskelet Med 4:11–15

    Article  PubMed Central  PubMed  Google Scholar 

  11. Harrysson OL, Hosni YA, Nayfeh JF (2007) Custom-designed orthopedic implants evaluated using finite element analysis of patient- specific computed tomography data: femoral-component case study. BMC Musculoskelet Disord 8:91

    Article  PubMed Central  PubMed  Google Scholar 

  12. Heyse TJ, Tibesku CO (2012) Improved femoral component rotation in TKA using patient-specific instrumentation. Knee. doi:10.1016/j.knee.2012.10.009

  13. Hofmann S, Romero J, Roth-Schiffl E, Albrecht T (2003) Rotational malalignment of the components may cause chronic pain or early failure in total knee arthroplasty. Orthopade 32:469–476

    CAS  PubMed  Google Scholar 

  14. Incavo SJ, Wild JJ, Coughlin KM, Beynnon BD (2007) Early revision for component malrotation in total knee arthroplasty. Clin Orthop Relat Res 458:131–136

    PubMed  Google Scholar 

  15. Jaffer AK, Barsoum WK, Krebs V, Hurbanek JG, Morra N, Brotman DJ (2005) Duration of anesthesia and venous thromboembolism after hip and knee arthroplasty. Mayo Clin Proc 80:732–738

    PubMed  Google Scholar 

  16. Jazrawi LM, Birdzell L, Kummer FJ, Di Cesare PE (2000) The accuracy of computed tomography for determining femoral and tibial total knee arthroplasty component rotation. J Arthroplasty 15:761–766

    Article  CAS  PubMed  Google Scholar 

  17. Klatt BA, Goyal N, Austin MS, Hozack WJ (2008) Custom-fit total knee arthroplasty (OtisKnee) results in malalignment. J Arthroplasty 23:26–29

    Article  PubMed  Google Scholar 

  18. Lakstein D, Zarrabian M, Kosashvili Y, Safir O, Gross AE, Backstein D (2010) Revision total knee arthroplasty for component malrotation is highly beneficial: a case control study. J Arthroplasty 25:1047–1052

    Article  PubMed  Google Scholar 

  19. Lombardi AV Jr, Berend KR, Adams JB (2008) Patient-specific approach in total knee arthroplasty. Orthopedics 31:927–930

    Article  PubMed  Google Scholar 

  20. Matsuda S, Miura H, Nagamine R, Urabe K, Hirata G, Iwamoto Y (2001) Effect of femoral and tibial component position on patellar tracking following total knee arthroplasty: 10-year follow-up of Miller-Galante I knees. Am J Knee Surg 14:152–156

    CAS  PubMed  Google Scholar 

  21. Merican AM, Ghosh KM, Iranpour F, Deehan DJ, Amis AA (2011) The effect of femoral component rotation on the kinematics of the tibiofemoral and patellofemoral joints after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 19:1479–1487

    Article  CAS  PubMed  Google Scholar 

  22. Ng VY, DeClaire JH, Berend KR, Gulick BC, Lombardi AV (2012) Improved accuracy of alignment with patient-specific positioning guides compared with manual instrumentation in TKA. Clin Orthop Relat Res 470:99–107

    Article  PubMed  Google Scholar 

  23. Nicoll D, Rowley DI (2010) Internal rotational error of the tibial component is a major cause of pain after total knee replacement. J Bone Joint Surg Br 92:1238–1244

    Article  CAS  PubMed  Google Scholar 

  24. Ong KL, Lau E, Manley M, Kurtz SM (2008) Effect of procedure duration on total hip arthroplasty and total knee arthroplasty survivorship in the United States Medicare population. J Arthroplasty 23:127–132

    Article  PubMed  Google Scholar 

  25. Pietsch M, Hofmann S (2012) Early revision for isolated internal malrotation of the femoral component in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 20:1057–1063

    Article  PubMed  Google Scholar 

  26. Prasad N, Padmanabhan V, Mullaji A (2007) Blood loss in total knee arthroplasty: an analysis of risk factors. Int Orthop 31:39–44

    Article  PubMed Central  PubMed  Google Scholar 

  27. Romero J, Stähelin T, Binkert C, Pfirrmann C, Hodler J, Kessler O (2007) The clinical consequences of flexion gap asymmetry in total knee arthroplasty. J Arthroplasty 22:235–240

    Article  PubMed  Google Scholar 

  28. Romero J, Stähelin T, Wyss T, Hofmann S (2003) Significance of axial rotation alignment of components of knee prostheses. Orthopade 32:461–468

    CAS  PubMed  Google Scholar 

  29. Spencer BA, Mont MA, McGrath MS, Boyd B, Mitrick MF (2009) Initial experience with custom-fit total knee replacement: intra-operative events and long-leg coronal alignment. Int Orthop 33:1571–1575

    Article  PubMed Central  PubMed  Google Scholar 

  30. Stulberg SD, Loan P, Sarin V (2002) Computer-assisted navigation in total knee replacement: results of an initial experience in thirty-five patients. J Bone Joint Surg Am 84A(Suppl 2):90–98

    Google Scholar 

  31. White D, Chelule KL, Seedhom BB (2008) Accuracy of MRI versus CT imaging with particular reference to patient specific templates for total knee replacement surgery. Int J Med Robot 4:224–231

    Article  CAS  PubMed  Google Scholar 

  32. Willis-Owen CA, Konyves A, Martin DK (2010) Factors affecting the incidence of infection in hip and knee replacement: an analysis of 5,277 cases. J Bone Joint Surg Br 92:1128–1133

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alcindo Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, A., Sampaio, R. & Pinto, E. Patient-specific instrumentation improves tibial component rotation in TKA. Knee Surg Sports Traumatol Arthrosc 22, 636–642 (2014). https://doi.org/10.1007/s00167-013-2639-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-013-2639-0

Keywords

Navigation