Skip to main content
Log in

Coupled 3D Numerical Model of Droplet Evolution Behaviors during the Magnetically Controlled Electroslag Remelting Process

  • Multiphase Flows in Materials Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A transient three-dimensional coupled numerical model has been established to clarify the influence of the external transverse static magnetic field (TSMF) on droplet evolution behaviors during the electroslag remelting (ESR) process with an alternating current (50 Hz). The development of the electromagnetic field code and the calculation procedure showed that the periodic inverse Lorentz force (50 Hz) could be fully coupled with the volume of fluid model in each iteration when an external TSMF of 0.05 T is superimposed. The droplet evolution behaviors with and without the external TSMF were demonstrated and analyzed. The numerical results showed that the huge periodic inverse Lorentz force could smash the droplet neck into numerous smaller droplets during the ESR process with the external TSMF; simultaneously, the interfacial area and falling time could be increased, indicating that the purification efficiency could be expected to improve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\( \vec{A} \) :

Magnetic potential vector (V s/m)

\( A_{x} , A_{y} , A_{z} \) :

Magnetic potential components in x, y, and z directions (V s/m)

\( \vec{B}_{\text{ext}} \) :

External magnetic flux density (T)

\( \vec{B}_{i} \) :

Induced magnetic flux density (T)

\( \vec{F}_{e} \) :

Lorentz force (N/m3)

\( f \) :

Current frequency (Hz)

\( \vec{g} \) :

Gravitational acceleration (m/s2)

\( I \) :

Root-mean-square current (A)

\( \vec{j} \) :

Current density (A/m2)

\( \vec{n} \) :

Unit normal vector

\( p \) :

Pressure (Pa)

\( R_{\text{m}} \) :

Radius of the ingot (m)

t :

Time (s)

\( \vec{v} \) :

Velocity (m/s)

x, y, z :

Cartesian coordinates

\( \mu_{0} \) :

Permeability of vacuum (H/m)

\( \mu_{\text{eff}} \) :

Effective viscosity (Pa s)

\( \bar{\rho } \) :

Density of the mixture phase (kg/m3)

\( \bar{\sigma } \) :

Electrical conductivity of the mixture phase (S/m)

\( \varphi \) :

Electrical potential (V)

References

  1. Y. Liu, Z. Zhang, G. Li, Q. Wang, L. Wang, and B. Li, Metals 7, 185 (2017).

    Article  Google Scholar 

  2. R. Fu, F. Li, F. Yin, D. Feng, Z. Tian, and L. Chang, Mater. Sci. Eng., A 638, 152 (2015).

    Article  Google Scholar 

  3. J. Reitz, B. Wietbrock, S. Richter, S. Hoffmann, G. Hirt, and B. Friedrich, Adv. Eng. Mater. 13, 395 (2011).

    Article  Google Scholar 

  4. Q.L. Wu, Y.S. Sun, F. Xue, and J. Zhou, Ironmak. Steelmak. 35, 387 (2008).

    Article  Google Scholar 

  5. A.K. Vaish, G.V.R. Iyer, P.K. De, B.A. Lakra, A.K. Chakrabarti, and P. Ramachandrarao, J. Met. Mater. Soc. 42, 11 (2000).

    Google Scholar 

  6. Q. Wang, G. Li, Y. Gao, Z. He, and B. Li, J. Appl. Electrochem. 47, 445 (2017).

    Article  Google Scholar 

  7. Q. Wang, Z. He, G. Li, B. Li, C. Zhu, and P. Chen, Int. J. Heat Mass Transf. 104, 943 (2017).

    Article  Google Scholar 

  8. E. Karimi-Sibaki, A. Kharicha, M. Wu, A. Ludwig, and J. Bohacek, Steel Res. Int. 88, 1700011 (2017).

    Article  Google Scholar 

  9. Z. Li, W. Zhou, and Y. Li, Iron Steel 15, 20 (1980).

    Google Scholar 

  10. Q. Wang, Y. Liu, F. Wang, G. Li, B. Li, and W. Qiao, Metall. Mater. Trans. B 48, 2649 (2017).

    Article  Google Scholar 

  11. Y.Y. Kompan, I. Protokovilov, Y. Fautrelle, Y. Gelfgat, and A. Bojarevics, in Paper Presented at International Scientific Colloquium Riga, 2010, pp. 85–90

  12. M. Murgaš, A.S. Chaus, A. Pokusa, and M. Pokusová, ISIJ Int. 40, 980 (2000).

    Article  Google Scholar 

  13. Y. Zhong, Q. Li, Y. Fang, H. Wang, M. Peng, L. Dong, T. Zheng, Z. Lei, W. Ren, and Z. Ren, Mater. Sci. Eng., A 660, 118 (2016).

    Article  Google Scholar 

  14. A. Kharicha, M. Wu, A. Ludwig, and E. Karimi-Sibaki, Metall. Mater. Trans. B 47, 1427 (2016).

    Article  Google Scholar 

  15. H. Wang, Y. Zhong, Q. Li, W. Li, W. Ren, Z. Lei, Z. Ren, and Q. He, ISIJ Int. 57, 2157 (2017).

    Article  Google Scholar 

  16. H. Wang, Y. Zhong, Q. Li, Y. Fang, W. Ren, Z. Lei, and Z. Ren, Metall. Mater. Trans. B 48, 655 (2016).

    Article  Google Scholar 

  17. H. Wang, Y. Zhong, Q. Li, Y. Fang, W. Ren, Z. Lei, and Z. Ren, ISIJ Int. 56, 255 (2016).

    Article  Google Scholar 

  18. H. Wang, Y. Zhong, Q. Li, Y. Fang, and Z. Lei, in Paper Presented at 8th International Conference on Electromagnetic Processing of Materials, Cannes, France, 2015, pp. 419–422

  19. Q. Wang and B. Li, ISIJ Int. 56, 282 (2016).

    Article  Google Scholar 

  20. F. Wang, Q. Wang, Y. Lou, R. Chen, Z. Song, and B. Li, JOM 68, 410 (2016).

    Article  Google Scholar 

  21. X. Wang and Y. Li, Metall. Mater. Trans. B 46, 1837 (2015).

    Article  Google Scholar 

  22. A. Kharicha, A. Ludwig, and M. Wu, ISIJ Int. 54, 1621 (2014).

    Article  Google Scholar 

  23. Q. Wang, Z. He, B. Li, and F. Tsukihashi, Metall. Mater. Trans. B 45, 2425 (2014).

    Article  Google Scholar 

  24. F. Wang, Q. Wang, and B. Li, ISIJ Int. 57, 91 (2017).

    Article  Google Scholar 

  25. A. Kharicha, A. Ludwig, and M. Wu, in Paper presented at LMPC 2011, Nancy, 2011, pp. 41–48

  26. A.H. Dilawari, J. Szekely, and T.W. Eagar, Mater. Trans. B 9, 371 (1978).

    Article  Google Scholar 

  27. Q. Wang, W. Rong, and B. Li, JOM 67, 2705 (2015).

    Article  Google Scholar 

  28. A. Kharicha, E. Karimi-Sibaki, M. Wu, A. Ludwig, and J. Bohacek, Steel Res. Int. 89, 1700100 (2017).

    Article  Google Scholar 

  29. Q. Wang, R. Zhao, M. Fafard, and B. Li, Appl. Therm. Eng. 80, 178 (2015).

    Article  Google Scholar 

  30. Y. Dong, Z. Jiang, H. Cao, X. Wang, Y. Cao, and D. Hou, ISIJ Int. 56, 1386 (2016).

    Article  Google Scholar 

  31. J. Campbell, J. Met. 22, 23 (1970).

    Google Scholar 

  32. O.A. Troyanskyy, in Paper Presented at Proceedings of the International Workshop on MetalSlag Interaction, Yalta, Ukraine, 2010, pp. 149–156

  33. C. Vivès, Metall. Mater. Trans. B 27, 445 (1996).

    Article  Google Scholar 

  34. A.F. Kolesnichenko, ISIJ Int. 30, 8 (1990).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Key Research and Development Program of China (No. 2016YFB0300401), National Natural Science Foundation of China (Nos. U1732276 and 51704193), General Financial Grant from the China Postdoctoral Science Foundation (No. 2017M621431), Science and Technology Commission of Shanghai Municipality (No. 15520711000), and Independent Research and Development Project of State Key of Advanced Special Steel, Shanghai University (SKLASS2015-Z021, SELF-2014-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunbo Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhong, Y., Dong, L. et al. Coupled 3D Numerical Model of Droplet Evolution Behaviors during the Magnetically Controlled Electroslag Remelting Process. JOM 70, 2917–2926 (2018). https://doi.org/10.1007/s11837-018-3029-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3029-3

Navigation