Skip to main content

Advertisement

Log in

A General Coupled Mathematical Model of Electromagnetic Phenomena, Two-Phase Flow, and Heat Transfer in Electroslag Remelting Process Including Conducting in the Mold

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A transient three-dimensional finite-volume mathematical model has been developed to investigate the coupled physical fields in the electroslag remelting (ESR) process. Through equations solved by the electrical potential method, the electric current, electromagnetic force (EMF), and Joule heating fields are demonstrated. The mold is assumed to be conductive rather than insulated. The volume of fluid approach is implemented for the two-phase flow. Moreover, the EMF and Joule heating, which are the source terms of the momentum and energy sources, are recalculated at each iteration as a function of the phase distribution. The solidification is modeled by an enthalpy-porosity formulation, in which the mushy zone is treated as a porous medium with porosity equal to the liquid fraction. An innovative marking method of the metal pool profile is proposed in the experiment. The effect of the applied current on the ESR process is understood by the model. Good agreement is obtained between the experiment and calculation. The electric current flows to the mold lateral wall especially in the slag layer. A large amount of Joule heating around the metal droplet varies as it falls. The hottest region appears under the outer radius of the electrode tip, close to the slag/metal interface instead of the electrode tip. The metal pool becomes deeper with more power. The maximal temperature increases from 1951 K to 2015 K (1678 °C to 1742 °C), and the maximum metal pool depth increases from 34.0 to 59.5 mm with the applied current ranging from 1000 to 2000 A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

\( \vec{A} \) :

Magnetic potential vector [(V s)/m]

A mush :

Mushy zone constant

\( \vec{B} \) :

Magnetic flux density (T)

c p :

Heat capacity [J/(kg K)]

\( C_{1\varepsilon } \) :

1.42

\( C_{2\varepsilon } \) :

1.68

\( C_{3\varepsilon } \) :

0.09

\( \vec{D} \) :

Electric flux density (C/m2)

\( \vec{E} \) :

Electric field intensity (N/C)

f H :

Electric current frequency (Hz)

f :

Liquid fraction

\( \vec{F}_{\text{b}} \) :

Buoyancy force (N/m3)

\( \vec{F}_{\text{e}} \) :

Electromagnetic force (N/m3)

\( \vec{F}_{\text{ed}} \) :

Effective electromagnetic force (N/m3)

\( \vec{F}_{\text{p}} \) :

Pressure drop (m/s)

\( \vec{g} \) :

Gravitational acceleration (m2/s)

G k :

Generation of turbulence kinetic energy due to the mean velocity gradients (Pa s)

G b :

Generation of turbulence kinetic energy due to buoyancy (Pa s)

h :

Sensible enthalpy (J/kg)

\( \vec{H} \) :

Magnetic field intensity (A/m)

H :

Enthalpy (J/kg)

I rms :

Root mean square current (A)

\( \vec{J} \) :

Current density (A/m2)

k :

Turbulent kinetic energy (m2/s2)

k eff :

Effective thermal conductivity [W/(m K)]

L :

Latent heat (J/kg)

p :

Pressure (Pa)

Q Joule :

Joule heating (W)

R :

Radius (m)

R max :

Radius of the mold (m)

R ɛ :

Additional term of dissipation rate of turbulent kinetic energy (m2/s3)

S k :

Source term of solidification in the turbulent kinetic energy equation (m2/s3)

S ɛ :

Source term of solidification in the dissipation rate of turbulent kinetic energy equation (m2/s3)

t :

Time (s)

T :

Temperature (K)

T ref :

Reference temperature (K)

T s :

Solidus temperature (K)

T :

Liquidus temperature (K)

\( \vec{u} \) :

Velocity (m/s)

\( \vec{u}_{\text{cast}} \) :

Casting velocity (m/s)

V drop :

Voltage drop of the lateral wall (V)

Y M :

Contribution of the fluctuating dilatation to the overall dissipation rate (m2/s3)

α :

Volume fraction of fluid

α k :

Inverse effective Prandtl number for turbulent kinetic energy

α ɛ :

Inverse effective Prandtl number for dissipation rate of turbulent kinetic energy

β :

Thermal expansion coefficient (1/K)

δ :

Electromagnetic skin thickness (m)

ɛ :

Dissipation rate of turbulent kinetic energy (m2/s3)

η :

Correction coefficient

μ :

Magnetic permeability (F/m)

μ 0m :

Vacuum permittivity of metal (F/m)

μ eff :

Effective viscosity (Pa s)

ρ :

Density (kg/m3)

ρ em :

Electric resistance of metal (Ω m)

σ :

Electrical conductivity [1/(Ω m)]

σ m :

Electrical conductivity of the metal [1/(Ω m)]

σ s :

Electrical conductivity of the slag [1/(Ω m)]

ϕ :

Electric potential (V)

References

  1. A.J.D. Johnson and A. Hellawell: Metall. Trans., 1972, vol. 3, pp. 1016–19.

    Article  Google Scholar 

  2. A. Mitchell and S. Joshi: Metall. Trans., 1973, vol. 4, pp. 631–42.

    Article  Google Scholar 

  3. M. Choudhary, J. Szekely, B.I. Medovar, and YU.G. Emelyanenko: Metall. Trans. B, 1982, vol. 13B, pp. 35–43.

    Article  Google Scholar 

  4. A.H. Dilawari and J. Szekely: Metall. Trans. B, 1978, vol. 9B, pp. 77–87.

    Article  Google Scholar 

  5. Y.M. Ferng, C.C. Chieng, and C. Pan: Numer. Heat Transf. A, 1989, vol. 16, pp. 429–49.

    Article  Google Scholar 

  6. V. Weber, A. Jardy, B. Dussoubs, D. Ablitzer, S. Rybéron, V. Schmitt, S. Hans, and H. Poisson: Metall. Mater. Trans. B, 2009, vol. 42B, pp. 271–80.

    Article  Google Scholar 

  7. B.K. Li, F. Wang, and F. Tsukihashi: ISIJ Int., 2012, vol. 52(7), pp. 1289–95.

    Article  Google Scholar 

  8. A. Kharicha, A. Ludwig, and M. Wu: Mater. Sci. Eng. A, 2005, vol. 413, pp. 129–34.

    Article  Google Scholar 

  9. B. Hernandez-Morales and A. Mitchell: Ironmak. Steelmak., 1999, vol. 26(6), pp. 423–38.

    Article  Google Scholar 

  10. K. Miyazawa, T. Fukaya, S. Asai, I. Muchi, M. Choudhary, and J. Szekely: Trans. ISIJ, 1985, vol. 25, pp. 386–93.

    Article  Google Scholar 

  11. K. Kajikawa, S. Ganesh, K. Kimura, H. Kudo, T. Nakamura, Y. Tanaka, R. Schwant, F. Gatazka, and Y. Ling: Ironmak. Steelmak., 2007, vol. 34(3), pp. 216–20.

    Article  Google Scholar 

  12. M. Choudhary and J. Szekely: Metall. Trans. B, 1980, vol. 11B, pp. 439–53.

    Article  Google Scholar 

  13. A.H. Dilawari, J. Szekely, and T.W. Eagar: Metall. Trans. B, 1978, vol. 9B, pp. 371–81.

    Article  Google Scholar 

  14. A. Jardy, D. Ablitzer, and J.F. Wadier: Metall. Trans. B, 1991, vol. 22B, pp. 111–20.

    Article  Google Scholar 

  15. M. Choudhary and J. Szekely: Metall. Trans. B, 1981, vol. 12B, pp. 418–21.

    Article  Google Scholar 

  16. A.H. Dilawari and J. Szekely: Metall. Trans. B, 1977, vol. 8B, pp. 227–36.

    Article  Google Scholar 

  17. O. Biro and K. Preis: IEEE Trans. Magn., 1989, vol. 25(4), pp. 3145–59.

    Article  Google Scholar 

  18. K.M. Kelkar, S.V. Patankar, and A. Mitchell: International Symposium on Liquid Metal Processing and Casting, Santa Fe, 2005, pp. 137–44.

  19. A. Kharicha, A. Mackenbrock, A. Ludwig, W. Schützenhöfer, V. Maronnier, M. Wu, and O. Köser: International Symposium on Liquid Metal Processing and Casting, Nancy, 2007, pp. 107–13.

  20. A. Kharicha, W. Schützenhöfer, A. Ludwig, and G. Reiter: Mater. Sci. Forum, 2010, vol. 649, pp. 229–36.

    Article  Google Scholar 

  21. C. W. Hirt and B.D. Nichols: J. Comput. Phys., 1981, vol. 39(1), pp. 201–25.

    Article  Google Scholar 

  22. A. Rückert and H. Pfeifer: International Scientific Colloquium Modelling for Electromagnetic Processing, Hannover, 2008, pp. 27–9.

  23. M. Meier, G. Yadigaroglu and B. L. Smith: Eur. J. Mech. B Fluids, 2002, vol. 21, pp. 61–73.

    Article  Google Scholar 

  24. A. Kharicha, W. Schützenhöfer, A. Ludwig, G. Reiter, and M. Wu: Steel Res. Int., 2008, vol. 79(8), pp. 632–36.

    Google Scholar 

  25. A. Kharicha, W. Schützenhöfer, A. Ludwig, G. Reiter and M. Wu: Int. J. Cast Met. Res., 2009, vol. 22, pp. 155–59.

    Article  Google Scholar 

  26. A. Mitchell: Mat. Sci. Eng. A, 2005, vol. 413, pp. 10–18.

    Article  Google Scholar 

  27. A. Mitchell: Mater. Sci. Technol., 2009, vol. 25(2), pp. 186–90.

    Article  Google Scholar 

  28. C.R. Swaminathan, V.R. Voller: Metall. Trans. B, 1992, vol. 23B, pp. 651–64.

    Article  Google Scholar 

  29. A. Kharicha, M. Wu, A. Ludwig, M. Ramprecht, and H. Holzgruber: TMS: CFD Modeling and Simulation in Materials, TMS, Orlando, 2012, pp. 139–46.

    Google Scholar 

  30. A.D. Patel: International Symposium on Liquid Metal Processing and Casting, Nancy, 2007, pp. 95–105.

  31. A. Kharicha, A. Ludwig, and M. Wu: International Symposium on Liquid Metal Processing and Casting, Nancy, 2011, pp. 113–19.

  32. S.A. Cefalu, K.J. Vanevery, and M.J.M. Krane: TMS: Multiphase Phenomena and CFD Modeling and Simulation in Materials Processes, TMS, Charlotte, 2004, pp. 279–83.

    Google Scholar 

  33. L. Nastac, S. Sundarraj, K. Yu, and Y. Pang: JOM, 1998, vol. 50(3), pp. 30–35.

    Article  Google Scholar 

  34. Y.Y. Sheng, G.A. Irons, and D.G. Tisdale: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 85–94.

    Article  Google Scholar 

  35. M. Hugo, B. Dussoubs, A. Jardy, J. Escaffre, and H. Poisson: International Symposium on Liquid Metal Processing and Casting, Austin, 2013, pp. 79–85.

  36. M. Murgaš, A.S. Chaus, A. Pokusa, and M. Pokusová: ISIJ Int., 2000, vol. 40(10), pp. 980-6.

    Article  Google Scholar 

  37. A. Mitchell and B. Hernandez-Morales: Metall. Trans. B, 1990, vol. 21B, pp. 723–31.

    Article  Google Scholar 

Download references

Acknowledgments

The authors’ gratitude goes to the National Natural Science Foundation of China [No. 51210007].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baokuan Li.

Additional information

Manuscript submitted November 25, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., He, Z., Li, B. et al. A General Coupled Mathematical Model of Electromagnetic Phenomena, Two-Phase Flow, and Heat Transfer in Electroslag Remelting Process Including Conducting in the Mold. Metall Mater Trans B 45, 2425–2441 (2014). https://doi.org/10.1007/s11663-014-0158-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0158-0

Keywords

Navigation