Skip to main content
Log in

Effects of forced electromagnetic vibrations during the solidification of aluminum alloys: Part I. solidification in the presence of crossed alternating electric fields and stationary magnetic fields

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A new magnetohydrodynamic method of transmitting forced vibrations to solidifying aluminum alloy melts has been developed. Contrary to the case of the conventional mechanoacoustic systems, this device lends itself very well to a fundamental investigation. The relatively accurate knowledge of both the electromagnetic pressure and the local velocity peaks has enabled us to reveal the specific effects of the oscillatory flow and of the cavitation phenomena on grain refinement. It has been shown that the cavitation threshold depends both on the surface state of the crucible internal walls and on the electromagnetic pressure peak. In the presence of well-developed cavitation situations, a very fine and homogeneous microstructure has been observed throughout the ingot. A laboratory prototype of a new magnetohydrodynamic cavity resonator, allowing for significant energy saving and likely to be used for industrial applications, including the elaboration of metal matrix composites by means of a preform infiltration process, was also the subject of experimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a:

mold width

B 0 :

stationary magnetic field

B:

amplitude of the induced magnetic field

b:

magnetic field induced byj

E 0 :

rms of the electromotive field generated byu and B0

E:

amplitude of the externally imposed electric field

e:

amplitude of the alternating fluid motion

F:

electromagnetic body force

f s :

solid fraction

g:

gravity

h:

mold height

h′:

depth

I:

amplitude of the electric current intensity

i:

variable electric current intensity

J:

amplitude of the electric current density

j:

conduction current density

j d :

displacement current density

L:

mold length

N:

frequency

P:

amplitude of the oscillatory pressure

P*:

normalized pressure amplitude

t:

time

u:

variable velocity

U:

amplitude of the variable velocity

V:

voltage generated byE

V 0 :

voltage generated by E0

γ:

acceleration

μe:

electric permittivity

μ:

magnetic permeability

ρ:

density

σ:

electric conductivity of the alloy

ϕ:

phase angle

ω:

current angular frequency

References

  1. F.C. Langenberg, G. Pestel, and C.R. Honeycutt:Trans. TMS-AIME, 1961, vol. 221, pp. 993–1001.

    CAS  Google Scholar 

  2. W. Poppmerier, B. Tarmann, and O. Schaaber:J. Met., 1966, No. 10, pp. 1109–14.

  3. H.S. Marr:Iron Steel Int., 1979. No. 2, pp. 29–41.

  4. G. Abbaschian and S. David:Trans. TMS-AIME, 1983, No. 1, pp. 3–63.

  5. A. Tsavaras and H. Brody:J. Met., 1984, No. 1, pp. 31–37.

  6. Ch. Vivès and Ch. Perry:Int. J. Heat Mass Transfer. 1986, vol. 29 (1), pp. 21–33.

    Article  Google Scholar 

  7. C. Vivès:Metall. Trans. B, 1989, vol. 20B, pp. 623–29.

    Article  Google Scholar 

  8. C. Vivès:Metall. Trans. B, 1989, vol. 20B, pp. 631–43.

    Article  Google Scholar 

  9. Merton C. Flemings:Metall. Trans. B, 1991, vol. 22B, pp. 269–93.

    Article  CAS  Google Scholar 

  10. C. Vivès:Metall. Trans. B. 1992, vol. 23B, pp. 189–206.

    Article  Google Scholar 

  11. C. Vivès:Metall. Trans. B. 1993, vol. 24B, pp. 493–510.

    Article  Google Scholar 

  12. J.-P. Gabathuler, D. Barras, Y. Krähenbühl, and J.-C. Weber:Processing of Semi-solid Alloys and Composites, S.B. Brown and M.C. Flemings, eds., MIT, Cambridge, MA, 1992, pp. 33–46.

    Google Scholar 

  13. D. Goel, D. Shunkla, and P. Pandey:Trans. Ind. Inst. Met., 1980, vol. 33 (3), pp. 196–99.

    CAS  Google Scholar 

  14. J. Campbell:Int. Met. Rev., 1981, vol. 2, pp. 71–108.

    Google Scholar 

  15. O. Abramov:Ultrasound in Liquid and Solid Metals. CRC Press, Boca Raton, FL, 1994, pp. 289–329.

    Google Scholar 

  16. M.C. Flemings, F.R. Mollard, E.F. Niyama, and H.F. Taylor:AFS Trans., 1962, vol. 70, pp. 1029–39.

    Google Scholar 

  17. F.R. 5 Mollard, M.C. Flemings, and E.F. Niyama:J. Met., 1987, vol. 39 (11), pp. 34–37.

    CAS  Google Scholar 

  18. T. Leighton:The Acoustic Bubble, Academic Press Ltd., London, 1994, pp. 531–51.

    Google Scholar 

  19. J. Shercliff:A Textbook of Magnetohydrodynamics, Pergamon Press, Oxford, United Kingdom. 1986, pp. 44–51.

    Google Scholar 

  20. J. Szekely:Fluid Flow Phenomena in Metals Processing, Academic Press, New York, NY, 1979, pp. 305–49.

    Google Scholar 

  21. D. Lillicrap:Electrowärme Int., 1986, vol. 44 (B3), pp. 116–122.

    Google Scholar 

  22. A.B. Wood:A Textbook of Sound, G. Bell and Sons Ltd., London, 1964, pp. 197–201.

    Google Scholar 

  23. T. Hucter and R. Bolt:Sonics. John Wiley and Sons, New York, NY, 1966, pp. 325–27.

    Google Scholar 

  24. W. Elmore and M. Heald:Physics of Waves, McGraw-Hill, New York, NY, 1969, pp. 148–51.

    Google Scholar 

  25. Ch. Vivès:Int. J. Heat Mass Transfer, 1990, vol. 33 (12), pp. 2585–98.

    Article  Google Scholar 

  26. R.M. Bhagat:Metal Matrix Composites: Processing and Interfaces, Academic Press, New York, NY. 1991, pp. 43–82.

    Google Scholar 

  27. B. Vyas and C. Preece:J. Appl. Phys., 1976, vol. 47, pp. 5133–38.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vivès, C. Effects of forced electromagnetic vibrations during the solidification of aluminum alloys: Part I. solidification in the presence of crossed alternating electric fields and stationary magnetic fields. Metall Mater Trans B 27, 445–455 (1996). https://doi.org/10.1007/BF02914909

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02914909

Keywords

Navigation