Skip to main content
Log in

Investigation of Heat Transfer and Magnetohydrodynamic Flow in Electroslag Remelting Furnace Using Vibrating Electrode

  • Published:
JOM Aims and scope Submit manuscript

Abstract

A transient three-dimensional (3D) coupled mathematical model has been developed to understand the effect of a vibrating electrode on the electromagnetic, two-phase flow and temperature fields as well as the solidification in the electroslag remelting (ESR) process. With the magnetohydrodynamic model, the Joule heating and Lorentz force, which are the source terms in the energy and momentum equations, are recalculated at each iteration as a function of the phase distribution. The influence of the vibrating electrode on the formation of the metal droplet is demonstrated by the volume of fluid approach. Additionally, the solidification of the metal is modeled by an enthalpy-based technique, in which the mushy zone is treated as a porous medium with porosity equal to the liquid fraction. The present work is the first attempt to investigate the innovative technology of the ESR process with a vibrating electrode by a transient 3D comprehensive model. A reasonable agreement between the experiment and simulation is obtained. The results indicate that the whole process is presented as a periodic activity. When the metal droplets fall from the tip of the electrode, the horizontal component of velocity will generate electrode vibration. This will lead to the distribution variation of the flow field in the slag layer. The variation of temperature distribution occurs regularly and is periodically accompanied by the behavior of the falling metal droplets. With the decreasing vibrating frequency and amplitude, the relative velocity of the electrode and molten slag increase accordingly. The diameter of the molten droplets, the maximum temperature and the depth of the molten pool gradually become smaller, lower and shallower.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A m :

Mushy zone constant

A x :

x Component of magnetic flux density (T)

A y :

y Component of magnetic flux density (T)

A z :

z Component of magnetic flux density (T)

A elec :

The area of bottom of electrode (m2)

\( \vec{B} \) :

Magnetic flux density (T)

C p :

Heat capacity [J/(kg K)]

\( \vec{E} \) :

Electric field intensity (N/C)

f H :

Electric current frequency (Hz)

f :

Liquid fraction

\( \vec{F}_{\text{b}} \) :

Buoyancy force (N/m3)

\( \vec{F}_{\text{e}} \) :

Electromagnetic force (N/m3)

\( \vec{F}_{\text{p}} \) :

Pressure drop (m/s)

\( \vec{g} \) :

Gravitational acceleration (m2/s)

H :

Sensible enthalpy (J/kg)

h ref :

Reference enthalpy (J/kg)

\( \vec{H} \) :

Magnetic field intensity (A/m)

H :

Enthalpy (J/kg)

I rms :

Root mean square current (A)

\( \vec{J} \) :

Current density (A/m2)

k :

Turbulent kinetic energy (m2/s2)

k e :

Effective thermal conductivity [W/(m K)]

L :

Latent heat (J/kg)

\( \dot{m} \) :

Melting rate (kg/s)

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {P} \) :

Pressure (Pa)

Q :

Joule heating (W)

R :

Radius (m)

R max :

Radius of the mold (m)

S k :

Source term of solidification in the turbulent kinetic energy equation (m2/s3)

S ɛ :

Source term of solidification in the dissipation rate of turbulent kinetic energy equation (m2/s3)

t :

Time (s)

T :

Temperature (K)

T ref :

Reference temperature (K)

T s :

Solidus temperature (K)

T :

Liquidus temperature (K)

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {v} \) :

Velocity (m/s)

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {v}_{\text{cast}} \) :

Casting velocity (m/s)

β :

Thermal expansion coefficient (1/K)

δ :

Electromagnetic skin thickness (m)

ɛ :

Dissipation rate of turbulent kinetic energy (m2/s3)

η :

Power efficiency

μ 0m :

Vacuum permittivity of metal (F/m)

μ eff :

Effective viscosity (Pa s)

ρ :

Density (kg/m3)

ρ em :

Electric resistance of metal (Ω m)

σ :

Electrical conductivity [1/(Ω m)]

ϕ :

Electric potential (V)

References

  1. B. Kalandyk and W. Wojtal, Arch. Metall. Mater. 58, 779 (2013).

    Google Scholar 

  2. A. Ludwig, A. Kharicha, and M. Wu, Metall. Metall. Mater. Trans. B 45B, 36 (2014).

    Article  MathSciNet  Google Scholar 

  3. B. Hernandez-Morales and A. Mitchell, Ironmak. Steelmak. 26, 423 (1999).

    Article  Google Scholar 

  4. K. Kajikawa, S. Ganesh, K. Kimura, H. Kudo, T. Nakamura, Y. Tanaka, R. Schwant, F. Gatazka, and Y. Ling, Ironmak. Steelmak. 34, 216 (2007).

    Article  Google Scholar 

  5. M. Choudhary and J. Szekely, Metall. Mater. Trans. B 12B, 418 (1981).

    Article  Google Scholar 

  6. K. Miyazawa, T. Fukaya, S. Asai, I. Muchi, M. Choudhary, and J. Szekely, Trans. ISIJ 25, 386 (1985).

    Article  Google Scholar 

  7. M. Choudhary, J. Szekely, B.I. Medovar, and Y.G. Emelyanenko, Metall. Mater. Trans. B 13B, 35 (1982).

    Article  Google Scholar 

  8. A. Mitchell and B. Hernandez-Morales, Metall. Mater. Trans. B 21B, 723 (1990).

    Article  Google Scholar 

  9. F. Wang, Y.C. Lou, R. Chen, Z.W. Song, and B.K. Li, China Foundry 12, 285 (2015).

    Google Scholar 

  10. S. Iijima, Y. Kondo, and T. Saito, Tetsu-to-Hagane 67, S645 (1978).

    Google Scholar 

  11. B. Li and F. Wang, in Paper presented at the 6th International Symposium on Electromagnetic Processing of Materials, Dresden, 2009, pp. 607–615.

  12. V. Weber, A. Jardy, B. Dussoubs, D. Ablitzer, S. Rybéron, V. Schmitt, S. Hans, and H. Poisson, Metall. Mater. Trans. B 40B, 271 (2009).

    Article  Google Scholar 

  13. A. Jardy, D. Ablitzer, and J.F. Wadier, Metall. Mater. Trans. B 22B, 111 (1991).

    Article  Google Scholar 

  14. K.M. Kelkar, S.V. Patanker, A.Mitchell, in Paper presented at Proceedings of the 2005 International Symposium on Liquid Metal Processing and Casting, Santa Fe, UM, 2005, pp. 137–144.

  15. M. Choudhary, J. Szekely, and T.I. Min, Metall. C. 90, 164 (1981).

    Google Scholar 

  16. M. Choudhary and J. Szekely, Ironmak. Steelmak. 8, 225 (1981).

    Google Scholar 

  17. A.H. Dilawari and J. Szekely, Ironmak. Steelmak. 4, 308 (1977).

    Google Scholar 

  18. Q. Wang, L. Gosselin, and B.K. Li, ISIJ Int. 54, 2821 (2014).

    Article  Google Scholar 

  19. B.K. Li, B. Wang, and F. Tsukihashi, Metall. Mater. Trans. B 45B, 1122 (2014).

    Article  Google Scholar 

  20. A.H. Dilawari and J. Szekely, Metall. Mater. Trans. B 9B, 77 (1978).

    Article  Google Scholar 

  21. J. Yanke and M. Krane, in Paper presented at Proceedings of the 2013 International Symposium on Liquid Metal Processing and Casting, Austin, TX, 2013, pp. 71–78.

  22. A.H. Dilawari and J. Szekely, Metall. Mater. Trans. B 8B, 227 (1977).

    Article  Google Scholar 

  23. C.W. Hirt and B.D. Nichols, J. Comput. Phys. 39, 201 (1981).

    Article  MATH  Google Scholar 

  24. M. Meier, G. Yadigaroglu, and B.L. Smith, Eur. J. Mech. B 21, 61 (2002).

    Article  MATH  Google Scholar 

  25. A. Kharicha, A. Ludwig, and M. Wu, Mater. Sci. Eng. A 413, 29 (2005).

    Google Scholar 

  26. A. Kharicha, W. Schützenhöfer, A. Ludwig, G. Reiter, and M. Wu, Steel Res. Int. 79, 632 (2008).

    Google Scholar 

  27. A.D. Patel, in Paper presented at Proceedings of the 2007 International Symposium on Liquid Metal Processing and Casting, Nancy, France, 2007, pp. 95–105.

  28. A. Kharicha, A. Ludwig, and M. Wu, in Paper presented at Proceedings of the 2011 International Symposium on Liquid Metal Processing and Casting, Nancy, France, 2011, pp. 113–119.

  29. Q. Wang, R.J. Zhao, M. Fafard, and B.K. Li, Appl. Therm. Eng. 80, 178 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors’ gratitude goes to National Natural Science Foundation of People’s Republic of China [Nos. 51275320 and 51210007].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Wang, Q., Lou, Y. et al. Investigation of Heat Transfer and Magnetohydrodynamic Flow in Electroslag Remelting Furnace Using Vibrating Electrode. JOM 68, 410–420 (2016). https://doi.org/10.1007/s11837-015-1684-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1684-1

Keywords

Navigation