Skip to main content
Log in

Effect of Current Frequency on Droplet Evolution During Magnetic-Field-Controlled Electroslag Remelting Process Via Visualization Method

  • Technical Publication
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A transparent physical model was set up to investigate the influence of the remelting current frequencies on droplet evolution during the magnetic-field-controlled electroslag remelting process. Physical simulation experiments were done under the remelting current of 8 A with frequencies ranging from 10 to 500 Hz, and a transverse static magnetic field (TSMF) of 0.7 T was superimposed simultaneously. The high-speed camera was used to record the evolution behavior of the droplet. Representative processes of formation and detachment of the droplets were observed under different conditions. The results showed that there was little influence of the current frequencies on the evolution behavior of the droplet without the external magnetic field. Nevertheless, if a TSMF was introduced, the liquid droplet’s neck would be smashed into a lot of smaller droplets when the remelting current frequencies were lower than 100 Hz, while the smashing effect disappeared when the frequencies were higher than 100 Hz. The mechanism of the smashing effect was discussed. Statistical work was done to obtain the quantitative data to give a clear result revealing the influence of the remelting current frequencies on droplet evolution. The decrease in the diameter of the liquid droplets would remarkably increase the interface area and shorten the migrating distance of the inclusions in the droplets, which meant that a higher purifying efficiency could be expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Halfa: Steel Res. Int., 2013, vol. 84, pp. 495-510.

    Article  Google Scholar 

  2. X.C. Chen, C.B. Shi, H.J. Guo, F. Wang, H. Ren, and D. Feng: Metal. Mater. Trans. B, 2012, vol. 43, pp. 1596-607.

    Article  Google Scholar 

  3. J. Reitz, B. Wietbrock, S. Richter, S. Hoffmann, G. Hirt, and B. Friedrich: Adv. Eng. Mater., 2011, vol. 13, pp. 395-99.

    Article  Google Scholar 

  4. T.R. Bandyopadhyay, P.K. Rao, and N. Prabhu: Ironmaking Steelmaking, 2006, vol. 33, pp. 337-43.

    Article  Google Scholar 

  5. S.K. Maity, N.B. Ballal, G. Goldhahn, and R. Kawalla: ISIJ Int., 2009, vol. 49, pp. 902-10.

    Article  Google Scholar 

  6. G. Balachandran, M.L. Bhatia, N.B. Ballal, and P.K. Rao: ISIJ Int., 2000, vol. 40, pp. 478-83.

    Article  Google Scholar 

  7. Z.B. Li, W.H. Zhou, and Y.D. Li: Ironmaking Steelmaking, 1980, vol. 15, pp. 20-6.

    Google Scholar 

  8. O. Jarleborg: Clean Steel, 1971, vol. 1, pp. 54-65.

    Google Scholar 

  9. C. Guang, Y.B. Zhong, M.L. Feng, Z.S. Lei, W.L. Ren, and Z.M. Ren: Shanghai Metals, 2012, vol. 34, pp. 44-9.

    Google Scholar 

  10. Y.Y. Kompan, I. Protokovilov, Y. Fautrelle, Y. Gelfgat, and A. Bojarevics: International Scientific Colloquium Modelling for Material Processing, Riga, 2010, pp. 85–90.

  11. M. Murgaš, A.S. Chaus, A. Pokusa, and M. Pokusová: ISIJ Int., 2000, vol. 40, pp. 980-6.

    Article  Google Scholar 

  12. Y.Y. Kompan: Advanced Light Alloys and Composites, 1st ed., vol. 59, p. 153, Springer Netherlands, Berlin, 1998.

    Book  Google Scholar 

  13. Y.Y. Kompan and I.V. Protokovilov: Metallic Materials with High Structural Efficiency, 1st ed., vol. 146, p. 413, Springer Netherlands, Berlin, 2004.

    Book  Google Scholar 

  14. E. Shcherbinin and Y.Y. Kompan: Magnetohydrodynamics, 2006, vol. 42, pp. 307-10.

    Google Scholar 

  15. Y.B. Zhong, Q. Li, Y.P. Fang, H. Wang, M.H. Peng, L.C. Dong, T.X. Zheng, Z.S. Lei, W.L. Ren, and Z.M. Ren: Mater. Sci. Eng., A, 2016, vol. 660, pp. 118-26.

    Article  Google Scholar 

  16. J. Campbell: J. Metals, 1970, vol. 22, pp. 23-35.

    Google Scholar 

  17. O.A. Troyanskyy: Proceedings of the International Workshop on Metal-Slag Interaction, Yalta, 2010, pp. 149–56.

  18. Q. Wang, Z. He, B.K. Li, and F. Tsukihashi: Metal. Mater. Trans. B, 2014, vol. 45, pp. 2425-41.

    Article  Google Scholar 

  19. A. Kharicha, A. Ludwig, and M. Wu: International Symposium on Liquid Metal Processing and Casting, Nancy, 2011, pp. 113–20.

  20. K. Nakashima and K. Mori: ISIJ Int., 1992, vol. 32, pp. 11-8.

    Article  Google Scholar 

  21. Y. Chung and A.W. Cramb: Metal. Mater. Trans. B, 2000, vol. 31, pp. 957-71.

    Article  Google Scholar 

  22. J. Elfsberg and T. Matsushita: Steel Res. Int., 2011, vol. 82, pp. 404-14.

    Article  Google Scholar 

  23. K. Iwai and M. Usui: ISIJ Int., 2010, vol. 50, pp. 1950-4.

    Article  Google Scholar 

  24. K. Iwai and T. Kohama: ISIJ Int., 2010, vol. 50, pp. 1357-61.

    Article  Google Scholar 

  25. K. Iwai and K. Sugiura: ISIJ Int., 2005, vol. 45, pp. 962-6.

    Article  Google Scholar 

  26. X.C. Miao, K. Timmel, D. Lucas, Z.M. Ren, S. Eckert, and G. Gerbeth: Metal. Mater. Trans. B, 2012, vol. 43, pp. 954-72.

    Article  Google Scholar 

  27. K. Timmel, S. Eckert, and G. Gerbeth: 2010, vol. 42, pp. 68-80.

    Google Scholar 

  28. C. Vivès and F. Tsukihashi: Metal. Trans. B, 1996, vol. 27, pp. 445-55.

    Article  Google Scholar 

  29. B.K. Li, F. Wang, and F. Tsukihashi: ISIJ Int., 2012, vol. 52, pp. 1289-95.

    Article  Google Scholar 

  30. E.K. Sibaki, A. Kharicha, M. Wu, A. Ludwig, H. Holzgrube, B. Ofner, and M. Ramprecht: Proceedings of the 2013 International Symposium on Liquid Metal Processing & Casting, Texas, 2013, pp. 13–19.

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the National Key Research and Development Program of China (2016YFB0300401), Science and Technology Commission of Shanghai Municipality (Key Project Nos. 13JC1402500, 15520711000), and Independent Research and Development Project of State Key of Advanced Special Steel, Shanghai University (SKLASS2015-Z021, SELF-2014-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunbo Zhong.

Additional information

Manuscript submitted October 10, 2015.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhong, Y., Li, Q. et al. Effect of Current Frequency on Droplet Evolution During Magnetic-Field-Controlled Electroslag Remelting Process Via Visualization Method. Metall Mater Trans B 48, 655–663 (2017). https://doi.org/10.1007/s11663-016-0779-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0779-6

Keywords

Navigation