Skip to main content
Log in

Big Data in Experimental Mechanics and Model Order Reduction: Today’s Challenges and Tomorrow’s Opportunities

  • S.I.: Machine learning in computational mechanics
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Since the turn of the century experimental solid mechanics has undergone major changes with the generalized use of images. The number of acquired data has literally exploded and one of today’s challenges is related to the saturation of mining procedures through such big data sets. With respect to digital image/volume correlation one of tomorrow’s pathways is to better control and master this data flow with procedures that are optimized for extracting the sought information with minimum uncertainties and maximum robustness. In this paper emphasis is put on various hierarchical identification procedures. Based on such structures a posteriori model/data reductions are performed in order to ease and make the exploitation of the experimental information far more efficient. Some possibilities related to other model order reduction techniques like the proper generalized decomposition are discussed and new opportunities are sketched.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Sutton M, Orteu J, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer, New York

    Google Scholar 

  2. Dufour JE, Hild F, Roux S (2015) Shape, displacement and mechanical properties from isogeometric multiview stereocorrelation. J Strain Anal 50(7):470

    Article  Google Scholar 

  3. Baruchel J, Buffière J, Maire E, Merle P, Peix G (eds) (2000) X-Ray tomography in material sciences. Hermès Science, Paris

    Google Scholar 

  4. Maire E, Withers PJ (2014) Quantitative X-ray tomography. Int Mat Rev 59(1):1

    Article  Google Scholar 

  5. Helfen L, Baumbach T, Mikulfk P, Kiel D, Pernot P, Cloetens P, Baruchel J (2005) High-resolution three-dimensional imaging of flat objects by synchrotron-radiation computed laminography. Appl Phys Lett 86(7):071915

    Article  Google Scholar 

  6. Helfen L, Myagotin A, Rack A, Pernot P, Mikulfk P, Di Michiel M, Baumbach T (2007) Synchrotron-radiation computed laminography for high-resolution three-dimensional imaging of flat devices. Phys Stat Sol 204:2760–2765

    Article  Google Scholar 

  7. Benoit A, Guérard S, Gillet B, Guillot G, Hild F, Mitton D, Périé J, Roux S (2009) 3D analysis from micro-MRI during in situ compression on cancellous bone. J Biomech 42:2381–2386

    Article  Google Scholar 

  8. Huang D, Swanson E, Lin C, Schuman J, Stinson W, Chang W, Hee M, Flotte T, Gregory K, Puliafito C, Fujimoto J (1991) Optical coherence tomography. Science 254(5035):1178–1181

    Article  Google Scholar 

  9. Grédiac M, Hild F (eds) (2012) Full-field measurements and identification in solid mechanics. ISTE/Wiley, London

    Google Scholar 

  10. Oden J, Belytschko T, Fish J, Hughes T, Johnson C, Keyes D, Laub A, Petzold L, Srolovitz D, Yip S (2006) Simulation-based engineering sciences. Final report, NFS. www.nsf.gov/pubs/reports/sbes_final_report.pdf)

  11. Carpiuc A (2015) Innovative tests for characterizing mixed-mode fracture of concrete: from pre-defined to interactive and hybrid tests. Ph.D. Thesis

  12. Fayolle X, Calloch S, Hild F (2007) Controlling testing machines with digital image correlation. Exp Tech 31(3):57–63

    Article  Google Scholar 

  13. Durif E, Réthoré J, Combescure A, Fregonese M, Chaudet P (2012) Controlling stress intensity factors during a fatigue crack propagation using digital image correlation and a load shedding procedure. Exp Mech 52:1021–1031

    Article  Google Scholar 

  14. Fayolle X, Hild F (2013) Controlling stress intensity factor histories with digital images. Exp Mech 54:305–314

    Article  Google Scholar 

  15. Darema F (2004) Dynamic data driven applications systems: a new paradigm for application simulations and measurements. Springer, Berlin

    Google Scholar 

  16. Sutton M (2013) Computer vision-based, noncontacting deformation measurements in mechanics: a generational transformation. Appl Mech Rev 65:050802

    Article  Google Scholar 

  17. Sutton M, Hild F (2015) Recent advances and perspectives in digital image correlation. Exp Mech 55(1):1–8

    Article  Google Scholar 

  18. Sutton MA, Li N, Joy D, Reynolds AP, Li X (2007) Scanning electron microscopy for quantitative small and large deformation measurements part i: sem imaging at magnifications from 200 to 10,000. Exp Mech 47(6):775–787

    Article  Google Scholar 

  19. Teyssedre H, Roux S, Régnier G, Tracz A (2011) Filtering out slow-scan drifts in atomic force microscopy images. J Strain Anal 46(5):361–367

    Article  Google Scholar 

  20. Han K, Ciccotti M, Roux S (2010) Measuring nanoscale stress intensity factors with an atomic force microscope. EuroPhys Lett 89(6):66003

    Article  Google Scholar 

  21. Neggers J, Hoefnagels J, Hild F, Roux S, Geers M (2014) Direct stress-strain measurements from bulged membranes using topography image correlation. Exp Mech 54(5):717–727

    Article  Google Scholar 

  22. Maynadier A, Poncelet M, Lavernhe-Taillard K, Roux S (2011) One-shot measurement of thermal and kinematic fields: infra-red image correlation (IRIC). Exp Mech 52(3):241–255

    Article  Google Scholar 

  23. Hild F, Roux S (2012) Digital image correlation. Wiley, Weinheim

    MATH  Google Scholar 

  24. Réthoré J, Roux S, Hild F (2007) From pictures to extended finite elements: extended digital image correlation (X-DIC). C R Mécanique 335:131–137

    Article  MATH  Google Scholar 

  25. Hild F, Roux S (2012) Comparison of local and global approaches to digital image correlation. Exp Mech 52(9):1503–1519

    Article  Google Scholar 

  26. Tarantola A (1987) Inverse problems theory. Methods for data fitting and model parameter estimation. Elsevier, Southampton

    MATH  Google Scholar 

  27. Kaipio J, Somersalo E (2006) Statistical and computational inverse problems. Springer, New York

    MATH  Google Scholar 

  28. Mottershead J, Link M, Friswell M (2011) The sensitivity method in finite element model updating: a tutorial. Mech Syst Signal Proc 25(7):2275–2296

    Article  Google Scholar 

  29. Leclerc H, Périé J, Roux S, Hild F (2009) Integrated digital image correlation for the identification of mechanical properties. Springer, Berlin, pp 161–171

    MATH  Google Scholar 

  30. Réthoré J (2010) A fully integrated noise robust strategy for the identification of constitutive laws from digital images. Int J Num Methods Eng 84(6):631–660

    Article  MATH  Google Scholar 

  31. Mathieu F, Leclerc H, Hild F, Roux S (2015) Estimation of elastoplastic parameters via weighted FEMU and integrated-DIC. Exp Mech 55(1):105–119

    Article  Google Scholar 

  32. Neggers J, Hoefnagels J, Geers M, Hild F, Roux S (2015) Time-resolved integrated digital image correlation. Int J Num Methods Eng 203(3):157–182

    Article  MathSciNet  MATH  Google Scholar 

  33. Hild F, Bouterf A, Chamoin L, Mathieu F, Neggers J, Pled F, Tomičević Z, Roux S (2016) Toward 4D mechanical correlation. Adv Mech Simul Eng Sci 47:495–503

    Google Scholar 

  34. Tikhonov A, Arsenin V (1977) Solutions of ill-posed problems. Wiley, New York

    MATH  Google Scholar 

  35. Lindner D, Mathieu F, Hild F, Allix O, Ha Minh C, Paulien-Camy O (2015) On the evaluation of stress triaxiality fields in a notched titanium alloy sample via integrated DIC. J Appl Mech 82(7):071014

    Article  Google Scholar 

  36. Bertin M, Hild F, Roux S, Mathieu F, Leclerc H, Aimedieu P (2016) Integrated digital image correlation applied to elasto-plastic identification in a biaxial experiment. J Strain Anal 51(2):118–131

    Article  Google Scholar 

  37. Chatterjee A (2000) An introduction to the proper orthogonal decomposition. Curr Sci 78(7):808

    Google Scholar 

  38. Maday Y, Ronquist EM (2004) The reduced basis element method: application to a thermal fin problem. SIAM J Sci Comput 26(1):240

    Article  MathSciNet  MATH  Google Scholar 

  39. Ladevèze P (2014) Separated representations and PGD-based model reduction. Springer, New York, pp 91–152

    MATH  Google Scholar 

  40. Chinesta F, Ammar A, Cueto E (2010) Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models. Arch Comput Methods Eng 17(4):327

    Article  MathSciNet  MATH  Google Scholar 

  41. Grepl M, Maday Y, Nguyen N, Patera A (2007) ESAIM. Modélisation mathématique et analyse numérique 41(3):575

    Google Scholar 

  42. Barrault M, Maday Y, Nguyen N, Patera A (2004) An ‘empirical interpolation’ method: application to efficient reduced-basis discretization o f partial differential equations. C R Acad Sci 339:667

    Article  MathSciNet  MATH  Google Scholar 

  43. Chaturentabut S, Sorensen D (2010) Nonlinear model reduction via discrete empirical interpolation. Soc Ind Appl Math 32(5):2737

    MathSciNet  MATH  Google Scholar 

  44. Ryckelynck D (2009) Hyper-reduction of mechanical models involving internal variables. Int J Numer Methods Eng 77(1):75

    Article  MathSciNet  MATH  Google Scholar 

  45. Farhat C, Avery P, Chapman T, Cortial J (2014) Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiency. Int J Numer Methods Eng 98(9):625. doi:10.1002/nme.4668

    Article  MathSciNet  MATH  Google Scholar 

  46. Néron D, Ladevèze P (2012) In: ASME (ed) Proceedings of the 11th Biennial conference on engineering systems design and analysis (ESDA 2012)

  47. Ladevèze P (1999) Nonlinear computational structural mechanics: new approaches and non-incremental methods of calculation. Mechanical engineering series. Springer, New York

    Book  MATH  Google Scholar 

  48. Néron D, Boucard PA, Relun N (2015) Time-space PGD for the rapid solution of 3D nonlinear parametrized problems in the many-query context. Int J Numer Methods Eng 103(4):275

    Article  MathSciNet  MATH  Google Scholar 

  49. Relun N, Néron D, Boucard PA (2013) A model reduction technique based on the PGD for elastic-viscoplastic computational analysis. Comput Mech 51:83

    Article  MathSciNet  MATH  Google Scholar 

  50. Allix O, Vidal P (2002) A new multi-solution approach suitable for structural identification problems. Comput Methods Appl Mech Eng 191(1):2727

    Article  MathSciNet  MATH  Google Scholar 

  51. Mahnken R, Stein E (1996) Parameter identification for viscoplastic models based on analytical derivatives of a least-squares functional and stability investigations. Int J Plast 12(4):451

    Article  MATH  Google Scholar 

  52. Constantinescu A, Tardieu N (2001) On the identification of elastoviscoplastic constitutive laws from indentation tests. Inverse Probl Eng 9:19

    Article  Google Scholar 

  53. Nadal E, Chinesta F, Diez P, Fuenmayor F, Deniac F (2015) Real time parameter identification and solution reconstruction from experimental data using the proper generalized decomposition. Comput Methods Appl Mech Eng 296:113

    Article  MathSciNet  Google Scholar 

  54. Vitse M, Néron D, Boucard PA (2014) Virtual charts of solutions for parametrized nonlinear equations. Comput Mech 54(6):1529

    Article  MathSciNet  MATH  Google Scholar 

  55. Gomes Perini L, Passieux JC, Périé JN (2014) A multigrid PGD-based algorithm for volumetric displacement fields measurements. Strain 50(4):355

    Article  Google Scholar 

  56. Passieux JC, Périé JN (2012) High resolution digital image correlation using proper generalized decomposition: PGD-DIC. Int J Num Methods Eng 92(6):531

    Article  MathSciNet  MATH  Google Scholar 

  57. Besnard G, Leclerc H, Roux S, Hild F (2012) Analysis of image series through global digital image correlation. J Strain Anal 47(4):214

    Article  Google Scholar 

  58. J. Neggers, F. Mathieu, S. Roux, F. Hild, in Photomechanics (2015)

  59. Neggers J, Mathieu F, Roux S, Hild F (2017) Reducing full-field identification cost by using Quasi-Newton methods. Springer, New York, pp 135–140

    Google Scholar 

  60. Kononen J, Bubendorf L, Kallionimeni A, Bärlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallionimeni OP (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4(7):844–847

    Article  Google Scholar 

  61. Sundberg SA (2000) High-throughput and ultra-high-throughput screening: solution-and cell-based approaches. Curr Opin Biotechnol 11(1):47

    Article  Google Scholar 

  62. Corbett PT, Leclaire J, Vial L, West KR, Wietor JL, Sanders JK, Otto S (2006) Dynamic combinatorial chemistry. Chem Rev 106(9):3652–3711

    Article  Google Scholar 

  63. Sarikaya M, Tamerler C, Jen AKY, Schulten K, Baneyx F (2003) Molecular biomimetics: nanotechnology through biology. Nat Mater 2(9):577–585

    Article  Google Scholar 

  64. Bertin MBR, Hild F, Roux S (2016) Optimization of a cruciform specimen geometry for the identification of constitutive parameters based upon full-field measurements. Strain 52(4):307–323

    Article  Google Scholar 

  65. Allix O, Feissel P, Nguyen H (2005) Identification strategy in the presence of corrupted measurements. Eng Comput 22(5–6):487–504

    Article  MATH  Google Scholar 

  66. Beaubier B, Dufour J, Hild F, Roux S, Lavernhe-Taillard S, Lavernhe-Taillard K (2014) AD-based calibration and shape measurement with stereoDIC. Exp Mech 54(3):329

    Article  Google Scholar 

  67. Dufour JE, Beaubier B, Hild F, Roux S (2015) CAD-based displacement measurements with stereo-DIC. Exp Mech 55(9):1657

    Article  Google Scholar 

  68. Limodin N, Réthoré J, Adrien J, Buffière J, Hild F, Roux S (2011) Analysis and artifact correction for volume correlation measurements using tomographic images from a laboratory X-ray source. Exp Mech 51(6):959

    Article  Google Scholar 

  69. Dufour J, Hild F, Roux S (2014) Integrated digital image correlation for the evaluation and correction of optical distortions. Opt Lasers Eng 56:121–133

    Article  Google Scholar 

  70. Leclerc H, Roux S, Hild F, Leclerc H, Roux S, Hild F (2015) Projection savings in CT-based digital volume correlation. Exp Mech 55(1):275–287

    Article  Google Scholar 

  71. Taillandier-Thomas T, Roux S, Hild F (2016) Soft route to 4D tomography. Phys Rev Lett 117(2):025501

    Article  MathSciNet  Google Scholar 

  72. Neggers J, Mathieu F, Hild F, Roux S, Swiergiel N (2017) Improving full-field identification using progressive model enrichments. Int J Solids Struct 203:157–182

    Google Scholar 

  73. Hild F, Bouterf A, Roux S (2015) Damage measurements via DIC. Int J Fract 191(1):77

    Article  Google Scholar 

  74. Hild F, Raka B, Baudequin M, Roux S, Cantelaube F (2002) Multiscale displacement field measurements of compressed mineral-wool samples by digital image correlation. Appl Opt 41(32):6815–6828

    Article  Google Scholar 

  75. Peherstorfer B, Willcox K (2015) Dynamic data-driven reduced-order models. Comput Methods Appl Mech Eng 291:21

    Article  MathSciNet  Google Scholar 

  76. Kirchdoerfer T, Ortiz M (2016) Data-driven computational mechanics. Comput Methods Appl Mech Eng 304:81–101

    Article  MathSciNet  Google Scholar 

  77. Ibanez R, Abisset-Chavanne E, Aguado JV, Gonzalez D, Cueto E, Chinesta F (2017) kPCA-Based parametric solutions within the PGD framework. Arch Comput Methods Eng. doi:10.1007/s11831-016-9173-4

  78. Germain P, Nguyen Q, Suquet P (1983) Continuum thermodynamics. J Appl Mech 50:1010

    Article  MATH  Google Scholar 

  79. Lemaitre J, Chaboche J (1990) Mechanics of solid materials. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

Download references

Acknowledgements

It is a pleasure to acknowledge the support of BPI France within the “DICCIT” project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Neggers.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neggers, J., Allix, O., Hild, F. et al. Big Data in Experimental Mechanics and Model Order Reduction: Today’s Challenges and Tomorrow’s Opportunities. Arch Computat Methods Eng 25, 143–164 (2018). https://doi.org/10.1007/s11831-017-9234-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-017-9234-3

Navigation