Skip to main content
Log in

Estimation of Elastoplastic Parameters via Weighted FEMU and Integrated-DIC

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

DIC-based identification of the constitutive parameters of an elastoplastic law is addressed both from a general viewpoint, and applied to the particular case of dog-bone sample made of commercially pure titanium and subjected to tensile loading. A two-step procedure (Digital Image Correlation — DIC — followed by weighted Finite Element Method Updating — FEMU) is first presented. These two steps can be merged into a single-step procedure (i.e., Integrated-DIC or I-DIC). In both cases, the elastoplastic computations are performed with a commercial code (i.e., non-intrusive identification). When the suited weighting of FEMU is taken into account, which is based on DIC-processed image noise, both I-DIC and FEMU methods provide similar results. It is shown that the addressed experimental case requires the use of static (load) information to get precise estimates of the sought parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Allix O, Feissel P, Nguyen H (2005) Identification Strategy in the Presence of Corrupted Measurements. Eng Comput 22(5-6):487–504

    Article  MATH  Google Scholar 

  2. Amiot F, Hild F, Roger J (2007) Identification of Elastic Property and Loading Fields from Full-Field Displacement Measurements. Int. J. Solids Struct 44:2863–2887

    Article  MATH  Google Scholar 

  3. Andrieux S, Abda A B, Bui H (1999) Reciprocity Principle and Crack Identification. Inv Probl 15:59–65

    Article  MATH  Google Scholar 

  4. Andrieux S, Bui H, Constantinescu A (2012) Reciprocity Gap Method. In: Grédiac M, Hild F (eds) Full-Field Measurements and Identification in Solid Mechanics. ISTE/Wiley, London, pp 363–378

    Chapter  Google Scholar 

  5. Avril S, Grédiac M, Pierron F (2004) Sensitivity of the Virtual Fields Method to Noisy Data. Comput Mech 34(6):439–452

    Article  MATH  Google Scholar 

  6. Avril S, Bonnet M, Bretelle A, Grédiac M, Hild F, Ienny P, Latourte F, Lemosse D, Pagano S, Pagnacco E, Pierron F (2008a) Overview of Identification Methods of Mechanical Parameters Based on Full-Field Measurements. Exp Mech 48(4):381–402

    Article  Google Scholar 

  7. Avril S, Pierron F, Pannier Y, Rotinat R (2008b) Stress Reconstruction and Constitutive Parameter Identification in Plane-Stress Elasto-Plastic problems Using Surface Measurements of Deformation Fields. Exp Mech 48(4):403–419

    Article  Google Scholar 

  8. Besnard G, Hild F, Roux S (2006) finite-element Displacement Fields Analysis from Digital Images: Application to Portevin-le Chatelier Bands. Exp Mech 46:789-803

  9. Besnard G, Leclerc H, Roux S, Hild F (2012) Analysis of Image Series through Digital Image Correlation. J. Strain Anal 47:214–228

    Article  Google Scholar 

  10. Bonnet M (2012) Introduction to Identification Methods. In: Grédiac M, Hild F (eds) Full-Field Measurements and Identification in Solid Mechanics. Wiley, London, pp 223–246

    Chapter  Google Scholar 

  11. Bonnet M, Constantinescu A (2005) Inverse Problems in Elasticity. Inv Probl 21:R1–R50

    Article  MATH  MathSciNet  Google Scholar 

  12. Bouterf A, Roux S, Hild F, Adrien J, Maire E (2014) Digital Volume Correlation Applied to X-ray Tomography Images from Spherical Indentation Tests on Lightweight Gypsum. Submitted for Publication

  13. Boyer R, Welsch G, Collings E W(eds) (1994) Materials Properties Handbook: titanium Alloys, ASM International

  14. Broggiato G (2004) Adaptive Image Correlation Technique for Full-Field Strain Measurement. In: Pappalettere C (ed) 12th Int Conf Exp Mech McGraw Hill, Bari, pp 420–421

    Google Scholar 

  15. Calloch S, Dureisseix D, Hild F (2002) Identification de modèles de comportement de matériaux solides : Utilisation d’essais et de CalculsTechnol Form 100:36–41

    Google Scholar 

  16. Claire D, Hild F, Roux S (2004) A finite element formulation to identify damage fields: the equilibrium gap method. Int J Num Meth Engng 61(2):189–208

    Article  MATH  Google Scholar 

  17. Collins J, Hart G, Kennedy B (1974) Statistical identification of structures. AIAA J 12(2):185–190

    Article  MATH  Google Scholar 

  18. Conrad H, Jones R (1970) The Science, Technology and Application of Titanium. Pergamon Press, Oxford

    Google Scholar 

  19. Cooreman S, Lecompte D, Sol H, Vantomme J, Debruyne D (2007) Elasto-plastic material parameter identification by inverse methods: calculation of the sensitivity matrix. Int J Solids Struct 44(13):4329–4341

    Article  MATH  Google Scholar 

  20. Fagerholt E, Børvik T, Hopperstad OS (2013) Measuring discontinuous displacement fields in cracked specimens using digital image correlation with mesh adaptation and crack-path optimization. Opt Lasers Eng 51(3):299–310

    Article  Google Scholar 

  21. Feissel P, Allix O (2007) Modified constitutive relation error identification strategy for transient dynamics with corrupted data: the elastic case. Comput Meth Appl Mech Eng 196(13/16):1968–1983

    Article  MATH  Google Scholar 

  22. Geymonat G, Hild F, Pagano S (2002) Identification of elastic parameters by displacement field measurement. C R Mécanique 330:403–408

    Article  MATH  Google Scholar 

  23. Gras R, Leclerc H, Roux S, Otin S, Schneider J, Périé J (2013b) Identification of the out-of-plane shear modulus of a 3d woven composite. Exp Mech 53:719–730

    Article  Google Scholar 

  24. Gras R, Leclerc H, Hild F, Roux S, Schneider J (2013) Identification of a set of macroscopic elastic parameters in a 3d woven composite: uncertainty analysis and regularization. Int J Solids Struct. doi:10.1016/j.ijsolstr.2013.12.023

  25. Grédiac M (1989) Principe des travaux virtuels et identification. C R Acad Sci Paris 309 (Série II):1–5

    MATH  Google Scholar 

  26. Grédiac M, Hild F(eds) (2012) Full-Field Measurements and Identification in Solid Mechanics, ISTE/Wiley, London

  27. Hamam R, Hild F, Roux S (2007) Stress intensity factor gauging by digital image correlation: application in cyclic fatigue. Strain 43:181–192

    Article  Google Scholar 

  28. Héripré E, Dexet M, Crépin J, Gélébart L, Roos A, Bornert M, Caldemaison D (2007) Coupling between experimental measurements and polycrystal finite element calculations for micromechanical study of metallic materials. Int J Plast 23(9):1512–1539

    Article  MATH  Google Scholar 

  29. Hermez F, Farhat C (1993) Updating finite element dynamic models using element-by-element sensitivity methodology. AIAA J 31(9):1702–1711

    Article  Google Scholar 

  30. Hild F, Roux S (2006) Digital image correlation: from measurement to identification of elastic properties - A revision. Strain 42:69–80

    Article  Google Scholar 

  31. Hild F, Roux S (2012a) Comparison of local and global approaches to digital image correlation. Exp Mech 52(9):1503–1519

    Article  Google Scholar 

  32. Hild F, Roux S (2012b) Digital Image Correlation. In: Rastogi P, Hack E (eds) (2012) Optical Methods for Solid Mechanics. A Full-Field Approach. Wiley-VCH, Weinheim, pp 183–228

    Google Scholar 

  33. Kavanagh K (1972) Extension of classical experimental techniques for characterizing the composite-material behavior. Exp Mech 12(1):50–56

    Article  Google Scholar 

  34. Kavanagh K, Clough R (1971) Finite element applications in the characterization of elastic solids. Int J Solids Struct 7:11–23

    Article  MATH  Google Scholar 

  35. Kim J-H, Serpantié A, Barlat F, Pierron F, Lee M-G (2013) Characterization of the post-necking strain hardening behavior using the virtual fields method. Int J Solids Struct 50:3829–3842

    Article  Google Scholar 

  36. Leclerc H, Périé J, Roux S, Hild F (2009) Integrated digital image correlation for the identification of mechanical properties, LNCS, vol 5496. Springer, Berlin, pp 161–171

    Google Scholar 

  37. Lecompte D, Smits A, Sol H, Vantomme J, Hemelrijck D (2007) Mixed numerical-experimental technique for orthotropic parameter identification using biaxial tensile tests on cruciform specimens. Int J Solids Struct 44(5):1643–1656

    Article  Google Scholar 

  38. Mathieu F, Hild F, Roux S (2012) Identification of a crack propagation law by digital image correlation. Int J Fat 36:146–154

    Article  Google Scholar 

  39. Mathieu F, Aimedieu P, Guimard J, Hild F (2013a) Identication of interlaminar fracture properties of a composite laminate using local full-field kinematic measurements and finite element simulations. Comp Part A 49:203–213

    Article  Google Scholar 

  40. Mathieu F, Hild F, Roux S (2013b) Image-based identification procedure of a crack propagation law. Eng Fract Mech 103:48–59

    Article  Google Scholar 

  41. Passieux J C, Périé J N (2012) Digital image correlation using proper generalized decomposition: PGD-DIC. Int J Num Meth Eng 92:531–550

    Article  Google Scholar 

  42. Pagnacco E, Caro-Bretelle A, Ienny P (2012) Parameter Identification from Mechanical Field Measurements using Finite Element Model Updating Strategies. In: Grédiac M, Hild F (eds) (2012) Full-Field Measurements and Identification in Solid Mechanics. ISTE/Wiley, London, pp 247–274

    Chapter  Google Scholar 

  43. Pierron F, Grédiac M (2012) The Virtual Fields Method. Springer

  44. Pottier T, Toussaint F, Vacher P (2011) Contribution of heterogeneous strain field measurements and boundary conditions modelling in inverse identification of material parameters. Eur J Mech A/Solids 30(3):373–382

    Article  MATH  Google Scholar 

  45. Ramberg W, Osgood W R (1943) Description of stress-strain curves by three parameters. Tech rep., National Advisory Committee For Aeronautics, Washington DC (USA)

  46. Réthoré J (2010) A fully integrated noise robust strategy for the identification of constitutive laws from digital images. Int J Num Meth Eng 84(6):631–660

    Article  MATH  Google Scholar 

  47. Roux S, Hild F (2006) Stress intensity factor measurements from digital image correlation: post-processing and integrated approaches. Int J Fract 140(1-4):141–157

    Article  MATH  Google Scholar 

  48. Roux S, Hild F (2008) Digital image mechanical identification (DIMI). Exp Mech 48(4):495–508

    Article  Google Scholar 

  49. Simoncelli E P (1999) Bayesian Multi-Scale Differential Optical Flow. In: Jähne B, Haussecker H, Geissler P (eds) Handbook of Computer Vision and Applications, vol 2. Academic Press, pp 297–422

  50. Simulia (2009) Abaqus Analysis User’s Manual, 19.1.1. Inelastic behavior. Dassault Systèmes, Providence, RI (USA)

  51. Sun Y, Pang J, Wong C, Su F (2005) Finite-element formulation for a digital image correlation method. Appl Optics 44(34):7357–7363

    Article  Google Scholar 

  52. Sutton M, Orteu J, Schreier H (2009) Image correlation for shape, motion and deformation measurements: Basic Concepts, Theory and Applications. Springer, New York

    Google Scholar 

  53. Tarigopula V, Hopperstad O, Langseth M, Clausen A, Hild F (2008a) A study of localisation in dual phase high-strength steels under dynamic loading using digital image correlation and fe analysis. Int J Solids Struct 45(2):601–619

    Article  MATH  Google Scholar 

  54. Tarigopula V, Hopperstad O, Langseth M, Clausen A, Hild F, Lademo O, Eriksson M (2008b) A study of large plastic deformations in dual phase steel using digital image correlation and fe analysis. Exp Mech 48(2):181–196

    Article  Google Scholar 

  55. Tomicevic Z, Hild F, Roux S (2013) Mechanics-aided digital image correlation. J Strain Anal 48:330–343

    Article  Google Scholar 

Download references

Acknowledgments

It is a pleasure to acknowledge the support of Région Ile de France (“FRESCORT” and “DICCIT” projects).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Mathieu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathieu, F., Leclerc, H., Hild, F. et al. Estimation of Elastoplastic Parameters via Weighted FEMU and Integrated-DIC. Exp Mech 55, 105–119 (2015). https://doi.org/10.1007/s11340-014-9888-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-014-9888-9

Keywords

Navigation