Skip to main content
Log in

Controlling Stress Intensity Factors During a Fatigue Crack Propagation Using Digital Image Correlation and a Load Shedding Procedure

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Digital Image Correlation is used for controlling load shedding fatigue crack propagation. A specific algorithm is used to perform Stress Intensity Factors (SIFs) and crack length estimation in real time. Crack length measurements are validated by comparison with potential drop technique. SIFs results are compared with more common techniques using standard analytical formula considering confined plasticity at the crack tip. The proposed non-contact method is shown to be a powerful tool to control crack propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bui H (2006) Fracture mechanics: inverse problems and solutions. Springer Verlag

  2. Bathias C, Pineau A (1980) La fatigue des matériaux et des structures. Maloine

  3. Oh C, Earmme Y, Song J (1997) Automated real-time measurements of fatigue crack length and crack opening load using unloading elastic compliance method. Int J Fatigue 19(2):169–176

    Article  Google Scholar 

  4. Johnson H (1965) Calibrating the electric potential method for studying slow crack growth (calibration of electric potential technique to study slow or steady crack growth in high strength materials). Mater Res Stand 5:442–445

    Google Scholar 

  5. Mann T, Harkegaard G, Stark K (2007) Short fatigue crack growth in aluminium alloy 6082-T6. Int J Fatigue 29(9–11):1820–1826

    Article  MATH  Google Scholar 

  6. Dawicke D, Sutton M, Newman Jr J, Bigelow C (1999) Measurement and analysis of critical CTOA for an aluminum alloy sheet. Fract Mech 25:358–379

    Google Scholar 

  7. Sutton M, Zhao W, McNeill S, Helm, J, Piascik R, Riddell W (1999) Local crack closure measurements: development of a measurement system using computer vision and a far-field microscope. Advances in fatigue crack closure measurement and analysis, pp 145–156

  8. Tada H, Paris P, Irwin G (2000) The stress analysis of cracks handbook, 3rd edn

  9. Lyons J, Liu J, Sutton M (1996) High-temperature deformation measurements using digital-image correlation. Exp Mech 36(1):64–70

    Article  Google Scholar 

  10. Kovac J, Alaux C, Marrow T, Govekar E, Legat A (2010) Correlations of electrochemical noise, acoustic emission and complementary monitoring techniques during intergranular stress-corrosion cracking of austenitic stainless steel. Corros Sci 52(6):2015–2025

    Article  Google Scholar 

  11. James M, Pacey M, Wei L, Patterson E (2003) Characterisation of plasticity-induced closure–crack flank contact force versus plastic enclave. Eng Fract Mech 70(17):2473–2487

    Article  Google Scholar 

  12. Diaz F, Patterson E, Tomlinson R, Yates J (2004) Measuring stress intensity factors during fatigue crack growth using thermoelasticity. Fatigue Fract Eng Mater Struct 27(7):571–583

    Article  Google Scholar 

  13. MCneill S, Peters W, Sutton M (1987) Estimation of stress intensity factor by digital image correlation. Eng Fract Mech 28(1):101–112

    Article  Google Scholar 

  14. Réthoré J, Gravouil A, Morestin F, Combescure A (2005) Estimation of mixed-mode stress intensity factors using digital image correlation and an interaction integral. Int J Fract 132(1):65–79

    Article  Google Scholar 

  15. Roux S, Hild F (2006) Stress intensity factor measurements from digital image correlation: post-processing and integrated approaches. Int J Fract 140(1):141–157

    Article  MATH  Google Scholar 

  16. Roux S, Réthoré J, Hild F (2009) Digital image correlation and fracture. J Phys D: Appl Phys 42:214004–214024

    Article  Google Scholar 

  17. Irwin G (1960) Plastic zone near a crack and fracture toughness. In: Proceedings of 7th Sagamore conference, pp 4–63

  18. Tay T, Yap C, Tay C (1995) Crack tip and notch tip plastic zone size measurement by the laser speckle technique. Eng Fract Mech 52(5):879–885

    Article  Google Scholar 

  19. Henninger C, Roux S, Hild F (2010) Enriched kinematic fields of cracked structures. Int J Solids Struct 47:3305–3316

    Article  MATH  Google Scholar 

  20. ASTM Standard (1995) E647-95. In: 1995 ASTM annual book of standards, vol 3, pp 578

  21. Xu T, Bea R (1997) Load shedding of fatigue fracture in ship structures. Mar Struct 10(1):49–80

    Article  Google Scholar 

  22. AFNOR (1992) Produits siderurgiques, essais mecaniques, partie 2: fatigue mecanique de la rupture

  23. Comite Europeen de Normalisation CE (1999) Protection contre la corrosion: terminologie essais de corrosion et protection cathodique, vol 1. AFNOR CEFRACOR

  24. Williams M (1957) On the stress distribution at the base of a stationary crack. ASME J Appl Mech 24:109–114

    MATH  Google Scholar 

  25. Hamam R, Hild F, Roux S (2007) Stress intensity factor gauging by digital image correlation: application in cyclic fatigue. Strain 43(3):181–192

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Durif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durif, E., Réthoré, J., Combescure, A. et al. Controlling Stress Intensity Factors During a Fatigue Crack Propagation Using Digital Image Correlation and a Load Shedding Procedure. Exp Mech 52, 1021–1031 (2012). https://doi.org/10.1007/s11340-011-9552-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-011-9552-6

Keywords

Navigation