Skip to main content
Log in

A model reduction technique based on the PGD for elastic-viscoplastic computational analysis

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper a model reduction approach for elastic-viscoplastic evolution problems is considered. Enhancement of the PGD reduced model by a new iterative technique involving only elastic problems is investigated and allows to reduce CPU cost. The accuracy of the solution and convergence properties are tested on an academic example and a calculation time comparison with the commercial finite element code Abaqus is presented in the case of an industrial structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammar A, Mokdad B, Chinesta F, Keunings R (2007) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids: Part II: Transient simulation using space-time separated representations. J Non-Newton Fluid Mech 144: 98–121

    Article  MATH  Google Scholar 

  2. Barrault M, Maday Y, Nguyen NC, Patera AT (2004) An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C R Math 339(9): 667–672

    MathSciNet  MATH  Google Scholar 

  3. Bergmann M, Cordier L (2008) Optimal control of the cylinder wake in the laminar regime by trust-region methods and pod reduced-order models. J Comput Phys 227(16): 7813–7840

    Article  MathSciNet  MATH  Google Scholar 

  4. Carlberg K, Bou-Mosleh C, Farhat C (2011) Efficient non-linear model reduction via a least-squares petrov–galerkin projection and compressive tensor approximations. Int J Numer Methods Eng 86(2): 155–181

    Article  MathSciNet  MATH  Google Scholar 

  5. Chaturantabut S, Sorensen DC (2010) Nonlinear model reduction via discrete empirical interpolation. SIAM J Sci Comput 32(5): 2737–2764

    Article  MathSciNet  MATH  Google Scholar 

  6. Chinesta F, Ammar A, Cueto E (2010) Proper generalized decomposition of multiscale models. Int J Numer Methods Eng 83(8–9): 1114–1132

    Article  MathSciNet  MATH  Google Scholar 

  7. Chinesta F, Ladevèze P, Cueto E (2011) A short review on model order reduction based on proper generalized decomposition. Arch Comput Methods Eng 18(4): 395–404

    Article  Google Scholar 

  8. Cognard JY, Ladevèze P (1993) A large time increment approach for cyclic viscoplasticity. Int J Plast 9(2): 141–157

    Article  MATH  Google Scholar 

  9. Cognard JY, Ladevèze P, Talbot P (1999) A large time increment approach for thermo-mechanical problems. Adv Eng Softw 30(9–11): 583–593

    Article  Google Scholar 

  10. González D, Ammar A, Chinesta F, Cueto E (2010) Recent advances on the use of separated representations. Int J Numer Methods Eng 81(5): 637–659

    MATH  Google Scholar 

  11. Gunzburger MD, Peterson JS, Shadid JN (2007) Reduced-order modeling of time-dependent pdes with multiple parameters in the boundary data. Comput Methods Appl Mech Eng 196(4-6): 1030–1047

    Article  MathSciNet  MATH  Google Scholar 

  12. Heyberger C, Boucard PA, Néron D (2012) Multiparametric analysis within the proper generalized decomposition framework. Comput Mech 49: 277–289

    Article  MATH  Google Scholar 

  13. Kunisch K, Xie L (2005) Pod-based feedback control of the burgers equation by solving the evolutionary hjb equation. Comput Math Appl 49(7–8): 1113–1126

    Article  MathSciNet  MATH  Google Scholar 

  14. Ladevèze P (1985) New algorithms: mechanical framework and development (in french). Compte rendu de l’académie des Sci 300(2): 41–44

    MATH  Google Scholar 

  15. Ladevèze P (1999) Nonlinear computationnal structural mechanics—new approaches and non-incremental methods of calculation. Springer, Berlin

    Google Scholar 

  16. Ladevèze P, Passieux JC, Néron D (2010) The LATIN multiscale computational method and the proper generalized decomposition. Comput Methods Appl Mech Eng 199: 1287–1296

    Article  MATH  Google Scholar 

  17. Leygue A, Verron E (2010) A first step towards the use of proper general decomposition method for structural optimization. Arch Comput Methods Eng 17(4): 465–472

    Article  MathSciNet  Google Scholar 

  18. Lieu T, Farhat C, Lesoinne M (2006) Reduced-order fluid/structure modeling of a complete aircraft configuration. Comput Methods Appl Mech Eng 195(41–43): 5730–5742

    Article  MATH  Google Scholar 

  19. Miyamura T, Noguchi H, Shioya R, Yoshimura S, Yagawa G (2002) Elastic–plastic analysis of nuclear structures with millions of dofs using the hierarchical domain decomposition method. Nucl Eng Des 212(1–3): 335–355

    Article  Google Scholar 

  20. Néron D, Ladevèze P (2010) Proper generalized decomposition for multiscale and multiphysics problems. Arch Comput Methods Eng 17: 351–372

    Article  MathSciNet  Google Scholar 

  21. Nguyen NC, Peraire J (2008) An efficient reduced-order modeling approach for non-linear parametrized partial differential equations. Int J Numer Methods Eng 76(1): 27–55

    Article  MathSciNet  MATH  Google Scholar 

  22. Nouy A (2010) A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations. Comput Methods Appl Mech Eng 199(23-24): 1603–1626

    Article  MathSciNet  MATH  Google Scholar 

  23. Nouy A, Ladevèze P (2004) On a multiscale computational strategy with time and space homogenization for structural mechanics. Comput Methods Appl Mech Eng 192: 3061–3087

    Google Scholar 

  24. Nouy A, Maître OPL (2009) Generalized spectral decomposition for stochastic nonlinear problems. J Comput Phys 228(1): 202–235

    Article  MathSciNet  MATH  Google Scholar 

  25. Relun N, Néron D, Boucard PA (2012) Multiscale elastic-viscoplastic computational analysis: a detailed example. Eur J Comput Mech 20(7–8): 379–409

    Google Scholar 

  26. Sarbandi B, Cartel S, Besson J, Ryckelynck D (2010) Truncated integration for simultaneous simulation of sintering using a separated representation. Arch Comput Methods Eng, pp 1–9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Boucard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Relun, N., Néron, D. & Boucard, P.A. A model reduction technique based on the PGD for elastic-viscoplastic computational analysis. Comput Mech 51, 83–92 (2013). https://doi.org/10.1007/s00466-012-0706-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0706-x

Keywords

Navigation