Skip to main content
Log in

Controlling Stress Intensity Factor Histories with Digital Images

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

It is shown that stress intensity factors (SIF) can be prescribed in mechanical tests by using digital image correlation. A priori resolutions are validated with a posteriori results. A cascade controller is implemented to prescribe SIF histories. A proof of concept is shown when testing a cracked elastomer. A tensile experiment is finally analyzed with a center cracked sheet made of commercially pure titanium. The linearity error is shown to be less than one order of magnitude higher for the closed-loop system when compared to the SIF resolution. However, it is still small compared to the SIF ranges investigated herein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lemaitre J, Chaboche J-L (1990) Mechanics of solid materials. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  2. Kanninen MF, Popelar CH (1985) Advanced fracture mechanics. Oxford University Press, Oxford

    MATH  Google Scholar 

  3. Williams ML (1957) On the stress distribution at the base of a stationary crack. ASME J Appl Mech 24:109–114

    MATH  Google Scholar 

  4. Wells AA (1961) Unstable crack propagation in metals: cleavage and fast fracture. Proc Crack Propag Symp 1:210–230

    Google Scholar 

  5. Rice JR (1967) Mechanics of crack tip deformation and extension by fatigue. In: Proceedings fatigue crack propagation, vol STP415. ASTM, Philadelphia, pp 247–309

    Google Scholar 

  6. Irwin GR (1957) Analysis of the stresses and strains near the end of a crack traversing a plate. ASME J Appl Mech 24:361–364

    Google Scholar 

  7. Griffith AA (1920) The phenomenon of rupture and flow in solids. Phil Trans R Soc Lond A221:163–198

    Google Scholar 

  8. Eshelby JD (1951) The force on an elastic singularity. Phil Trans R Soc Lond A244:87–112

    Article  MathSciNet  Google Scholar 

  9. Cherepanov GP (1967) The propagation of cracks in a continuous medium. J Appl Math Mech 31(3):503–512

    Article  MATH  MathSciNet  Google Scholar 

  10. Rice JR (1968) A path independent integral and approximate analysis of strain concentrations by notches and cracks. ASME J Appl Mech 35:379–386

    Article  Google Scholar 

  11. Zuidema J, Mannesse M (1989) A model for predicting slant fatigue crack growth in A1 2024. Eng Fract Mech 34:445–456

    Article  Google Scholar 

  12. Srawley JE, Gross B (1967) Stress intensity factors for crackline-loaded edge-crack specimens. Mater Res Stand 7:155–162

    Google Scholar 

  13. Pulos GC, Knauss WG (1993) Constant stress intensity factors through closed-loop control. Int J Fract 63(2):101–112

    Article  Google Scholar 

  14. Sutton MA, Orteu J-J, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer, New York

    Google Scholar 

  15. Hild F, Roux S (2012) Digital image correlation. In: Rastogi P, Hack E (eds) Optical methods for solid mechanics. A full-field approach. Wiley-VCH, Weinheim, pp 183–228

    Google Scholar 

  16. Riddel WT, Piascik RS, Sutton MA, Zhao W, McNeill SR, Helm JD (1999) Determining fatigue crack opening loads from near-crack-tip displacement measurements. In: McClung RC, Newman JJC (eds) Advances in fatigue crack closure measurement and analysis, vol STP1343. ASTM, pp 157–174

  17. Hamam R, Hild F, Roux S (2007) Stress intensity factor gauging by digital image correlation: application in cyclic fatigue. Strain 43:181–192

    Article  Google Scholar 

  18. Phillips JW (1982) Fracture mechanics and experimental analysis. Exp Tech 6(3):11–13

    Article  Google Scholar 

  19. McNeill SR, Peters WH, Sutton MA (1987) Estimation of stress intensity factor by digital image correlation. Eng Fract Mech 28(1):101–112

    Article  Google Scholar 

  20. Abanto-Bueno J, Lambros J (2002) Investigation of crack growth in functionally graded materials using digital image correlation. Eng Fract Mech 69:1695–1711

    Article  Google Scholar 

  21. Roux S, Hild F (2006) Stress intensity factor measurements from digital image correlation: post-processing and integrated approaches. Int J Fract 140(1–4):141–157

    Article  MATH  Google Scholar 

  22. Yoneyama S, Ogawa T, Kobayashi Y (2007) Evaluating mixed-mode stress intensity factors from full-field displacement fields obtained by optical methods. Eng Fract Mech 74:1399–1412

    Article  Google Scholar 

  23. G’Sell C, Hiver J-M, Dahnoun A, Souahi A (1992) Video-controlled tensile testing of polymers and metals beyond the necking point. J Mat Sci 27:5031–5039

    Article  Google Scholar 

  24. Fayolle X, Calloch S, Hild F (2007) Controlling testing machines with digital image correlation. Exp Tech 31(3):57–63

    Article  Google Scholar 

  25. Fayolle X (2008) CorelliFIC :programme de pilotage d’essais asservis sur un facteur d’intensité des contraintes. MSc. thesis, CNAM Paris

  26. Durif E, Réthoré J, Combescure A, Fregonese M, Chaudet P (2012) Controlling stress intensity factors during a fatigue crack propagation using digital image correlation and a load shedding procedure. Exp Mech 52:1021–1031

    Article  Google Scholar 

  27. ISO (1993) International vocabulary of basic and general terms in metrology (VIM). International Organization for Standardization, Geneva

    Google Scholar 

  28. ISO (1995) Guide to the expression of uncertainty in measurements (GUM). International Organization for Standardization, Geneva

    Google Scholar 

  29. Chen DJ, Chiang FP, Tan YS, Don HS (1993) Digital speckle-displacement measurement using a complex spectrum method. Appl Opt 32:1839–1849

    Article  Google Scholar 

  30. Berthaud Y, Scholz J, Thesing J (1997) Méthodes optiques et acoustiques de mesures des caractéristiques mécaniques. Proceedings Colloque national MECAMAT “Mécanismes et mécanique des grandes déformations”. pp 77–80

  31. Chiang FP, Wang Q, Lehman F (1997) New developments in full-field strain measurements using speckles. In: Non-traditional methods of sensing stress, strain and damage in materials and structures, vol STP1318. ASTM, Philadelphia, pp 156–169

    Chapter  Google Scholar 

  32. Chevalier L, Calloch S, Hild F, Marco Y (2001) Digital image correlation used to analyze the multiaxial behavior of rubber-like materials. Eur J Mech A Solids 20:169–187

    Article  MATH  Google Scholar 

  33. Hild F, Roux S (2012) Comparison of local and global approaches to digital image correlation. Exp Mech 52(9):1503–1519

    Article  Google Scholar 

  34. Bergonnier S, Hild F, Roux S (2005) Digital image correlation used for mechanical tests on crimped glass wool samples. J Strain Anal 40(2):185–197

    Article  Google Scholar 

  35. Réthoré J, Roux S, Hild F (2008) Noise-robust stress intensity factor determination from kinematic field measurements. Eng Fract Mech 75(13):3763–3781

    Article  Google Scholar 

  36. Mathieu F, Hild F, Roux S (2012) Identification of a crack propagation law by digital image correlation. Int J Fatigue 36:146–154

    Article  Google Scholar 

  37. Leclerc H, Périé J-N, Roux S, Hild F (2009) Integrated digital image correlation for the identification of mechanical properties. In: Gagalowicz A, Philips W (eds) MIRAGE 2009, vol LNCS5496. Springer, Berlin, pp 161–171

    Google Scholar 

  38. Mathworks (2012) Simulation and model-based simulation, version R2012b. The MathWorks, Inc. http://www.mathworks.com

  39. Tada H, Paris PC, Irwin GR (1985) The stress analysis of cracks handbook. Del Research, St Louis

    Google Scholar 

  40. National Instrument (2012) LabVIEW TM, user’s manual. http://www.ni.com

  41. Ward IM, Hadley DW (1993) An introduction to the mechanical properties of solid polymers. Wiley, New York

    Google Scholar 

  42. Mathieu F, Hild F, Roux S (2013) Image-based identification procedure of a crack propagation law. Eng Fract Mech 103:48–59

    Article  Google Scholar 

  43. Henninger C, Roux S, Hild F (2010) Enriched kinematic fields of cracked structures. Int J Solids Struct 47:3305–3316

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a grant from Region Ile-de-France (plateforme francilienne d’expérimentation mécanique de troisiéme génération). The authors thank Dr. Roux for useful discussions during the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Hild.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fayolle, X., Hild, F. Controlling Stress Intensity Factor Histories with Digital Images. Exp Mech 54, 305–314 (2014). https://doi.org/10.1007/s11340-013-9790-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-013-9790-x

Keywords

Navigation