Skip to main content
Log in

Site-specific deletions in the tomato genome by the CinH-RS2 and ParA-MRS recombination systems

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

We have tested the CinH-RS2 and ParA-MRS site-specific deletion systems in tomato (Solanum lycopersicum L.). The ParA-MRS system is derived from the broad-host-range plasmid RK2, where the 222 aa ParA recombinase recognizes a 133 bp multimer resolution site (MRS). The CinH-RS2 system is derived from Acinetobacter plasmids pKLH2 and pKLH204, where the 188 amino acid CinH recombinase recognizes a 113-bp recombination site known as RS2. In this study, target lines containing a DNA segment flanked by recombination sites were crossed to recombinase-expressing lines producing CinH or ParA recombinase. CinH-mediated recombination of RS2 substrates was detected in 2 of 3 F1 plants that harbor both the target and recombinase loci. On the other hand, recombination mediated by ParA was not detected among F1 plants, but was found among 13 of 47 F2 plants. These data show that both systems can mediate site-specific DNA deletion in the tomato genome, and, upon further refinement, can provide additional molecular tools for tomato improvement through precise genome manipulation. As the target construct also contains additional recombination sites for site-specific integration by other recombination systems, these tomato lines could be used for future testing of gene stacking through site-specific integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Butelli E, Titta L, Giorgio M, Mock HP, Matros A, Peterek S, Schijlen EGWM, Hall RD, Bovy AG, Luo J, Martin C (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26:1301–1308

    Article  PubMed  CAS  Google Scholar 

  • Cantu D, Vicente A, Greve L, Dewey F, Bennett A, Labavitch J, Powell A (2008) The intersection between cell wall disassembly, ripening, and fruit susceptibility to Botrytis cinerea. Proc Natl Acad Sci USA 105:859–864

    Article  PubMed  CAS  Google Scholar 

  • Dale EC, Ow DW (1991) Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci USA 88:10558–10562

    Article  PubMed  CAS  Google Scholar 

  • Davidovich-Rikanati R, Sitrit Y, Tadmor Y, Iijima Y, Bilenko N, Bar E, Carmona B, Fallik E, Dudai N, Simon JE, Pichersky E, Lewinsohn E (2007) Enrichment of tomato flavor by diversion of the early plastidial terpenoid pathway. Nat Biotechnol 25:899–901

    Article  PubMed  CAS  Google Scholar 

  • Fulton TM, Chunwongse H, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plant. Plant Mol Biol Rep 13:207–209

    Article  CAS  Google Scholar 

  • Gidoni D, Bar M, Gilboa N (2001) FLP/FRT-mediated restoration of normal phenotypes and clonal sectors formation in rolC transgenic tobacco. Transgenic Res 10:317–328

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Khan RS, Nakamura I, Mii M (2011) Development of disease-resistant marker-free tomato by R/Rs site-specific recombination. Plant Cell Rep 30:1041–1053

    Article  PubMed  CAS  Google Scholar 

  • Kholodii G, Mindlin S, Gorlenko Z, Petrova M, Hobman J, Nikiforov V (2004) Translocation of transposition-deficient (TndPKLH2-like) transposons in the natural environment: mechanistic insights from the study of adjacent DNA sequences. Microbiology (Engl Transl) 150:979–992

    CAS  Google Scholar 

  • Li Z, Moon BP, Xing A, Liu ZB, McCardell RP, Damude HG, Falco SC (2010) Stacking multiple transgenes at a selected genomic site via repeated recombinase-mediated DNA cassette exchanges. Plant Physiol 154:622–631

    Article  PubMed  CAS  Google Scholar 

  • Luo K, Duan H, Zhao D, Zheng X, Deng W, Chen Y, Stewart CN Jr, McAvoy R, Jiang X, Wu Y, He A, Pei Y, Li Y (2007) ‘GM-gene-deletor’: fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotechnol J 5:263–274

    Article  PubMed  CAS  Google Scholar 

  • Moon HS, Abercrombie LL, Eda S, Blanvillain R, Thomson JG, Ow DW, Stewart CN Jr (2011) Transgene excision in pollen using a codon optimized serine resolvase CinH-RS2 site-specific recombination system. Plant Mol Biol 5:621–631

    Article  Google Scholar 

  • Mueller LA, Lankhorst RK, Tanksley SD, Giovannoni JJ, White R, Vrebalov J et al (2009) A snapshot of the emerging tomato genome sequence. Plant Genome 2:78–92

    Article  CAS  Google Scholar 

  • Nandy S, Srivastava V (2011) Site-specific gene integration in rice genome mediated by the FLP-FRT recombination system. Plant Biotechnol J 9:713–721

    Article  PubMed  CAS  Google Scholar 

  • Nanto K, Yamada-Watanabe K, Ebinuma H (2005) Agrobacterium-mediated RMCE approach for gene replacement. Plant Biotechnol J 3:203–214

    Article  PubMed  CAS  Google Scholar 

  • Onouchi H, Nishihama R, Kudo M, Machida Y, Machida C (1995) Visualization of site-specific recombination catalyzed by a recombinase from Zygosaccharomyces rouxii in Arabidopsis thaliana. Mol Gen Genet 247:653–660

    Article  PubMed  CAS  Google Scholar 

  • Ouyang B, Li H, Ye Z (2003) Increased resistance to Fusarium wilt in transgenic tomato expressing bivalent hydrolytic enzyme. J Plant Physiol Mol Biol 29:179–184

    CAS  Google Scholar 

  • Ow DW (2002) Recombinase-directed plant transformation for the post-genomic era. Plant Mol Biol 48:183–200

    Article  PubMed  CAS  Google Scholar 

  • Ow DW (2007) GM maize from site-specific recombination technology, what next? Curr Opin Biotechnol 18:115–120

    Article  PubMed  CAS  Google Scholar 

  • Ow DW (2011) Recombinase-mediated gene stacking as a transformation operating system. J Integr Plant Biol 53:512–519

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schaart JG, Krens FA, Pelgrom KTB, Mendes O, Rouwendal GJA (2004) Effective production of marker-free transgenic strawberry plants using inducible site-specific recombination and a bifunctional selectable marker gene. Plant Biotechnol J 2:233–240

    Article  PubMed  CAS  Google Scholar 

  • Sobecky PA, Easter CL, Bear PD, Helinski DR (1996) Characterization of the stable maintenance properties of the par region of broad-host-range plasmid RK2. J Bacteriol 178:2086–2093

    PubMed  CAS  Google Scholar 

  • Song H, Ren XS, Si J, Li C, Song M, Lei J (2009) Construction the engineered restoring line of tomato engineered male sterile line by Cre/lox site-specific recombination system. Sci Agric Sin 42:3581–3591

    CAS  Google Scholar 

  • Sonti RV, Tissier AF, Wong D, Viret JF, Signer ER (1995) Activity of the yeast FLP recombinase in Arabidopsis. Plant Mol Biol 6:1127–1132

    Article  Google Scholar 

  • Srivastava V, Anderson OD, Ow DW (1999) Single-copy transgenic wheat generated through the resolution of complex integration patterns. Proc Natl Acad Sci USA 96:11117–11121

    Article  PubMed  CAS  Google Scholar 

  • Thomason LC, Calendar R, Ow DW (2001) Gene insertion and replacement in Schizosaccharomyces pombe mediated by the Streptomyces bacteriophage phiC31 site-specific recombination system. Mol Genet Genomics 265:1031–1038

    Article  PubMed  CAS  Google Scholar 

  • Thomson JG, Ow DW (2006) Site-specific recombination systems for the genetic manipulation of eukaryotic genomes. Genesis 44:465–476

    Article  PubMed  CAS  Google Scholar 

  • Thomson JG, Yau YY, Blanvillain R, Nunes WM, Chiniquy D, Thilmony R, Ow DW (2009) ParA resolvase catalyzes site-specific excision of DNA from the Arabidopsis genome. Transgenic Res 18:237–248

    Article  PubMed  CAS  Google Scholar 

  • Yau YY, Wang Y, Thomson JG, Ow DW (2011) Method for Bxb1-mediated site-specific integration in planta. In: Birchler JA (ed) Methods in molecular biology, vol 701. Humana Press, Totowa, NJ, pp 147–166

    Google Scholar 

  • Zhang H, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Li H, Ouyang B, Lu Y, Ye Z (2006) Chemical-induced autoexcision of selectable markers in elite tomato plants transformed with a gene conferring resistance to lepidopteran insects. Biotechnol Lett 28:1247–1253

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Liu H, Li B, Zhang J, Li Y, Zhang H (2009) Generation of selectable marker-free transgenic tomato resistant to drought, cold and oxidative stress using the Cre/loxP DNA excision system. Transgenic Res 18:607–619

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Zhibiao Ye of Huazhong Agriculture University for technical support and Zhiguo Han of South China Botanical Garden for technical advice and discussion. This work was partially supported by Knowledge Innovation Project of The Chinese Academy of Sciences (KSCX2-EW-J-20), CAS/SAFEA International Partnership Program for Creative Research Teams Project, and the Chinese Ministry of Agriculture (2010ZX08010-001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David W. Ow or Ying Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Yau, YY., Ow, D.W. et al. Site-specific deletions in the tomato genome by the CinH-RS2 and ParA-MRS recombination systems. Plant Biotechnol Rep 6, 225–232 (2012). https://doi.org/10.1007/s11816-012-0217-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-012-0217-4

Keywords

Navigation