Skip to main content
Log in

Femtosecond laser micro/nano fabrication for bioinspired superhydrophobic or underwater superoleophobic surfaces

飞秒激光微纳制造仿生超疏水或水下超疏油表面

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The preparation of superhydrophobic or underwater superoleophobic interface materials has become a research hotspot because of their wide application in self-cleaning, drag reduction, oil-water separation, anti-oil pollution and so on. The unique wettability of organisms gives inspiration to design and create new interface materials. This review focuses on the recent research progress of femtosecond laser micro/nano fabrication for bioinspired superhydrophobic or underwater superoleophobic surfaces. This review starts with a presentation of the related background including the advantages of femtosecond laser and wettability theoretical basis. Then, organisms with unique wettability in nature, the preparation of superhydrophobic or underwater superoleophobic surfaces by femtosecond lasers on different materials, and their related important applications are introduced. Finally, the current challenges and future prospects with regard to this field are provided.

摘要

超疏水或水下超疏油表面在在自清洁、减阻、油水分离、抗油污染等方面有着广泛的应用, 因 而它们的制备成为当前的研究热点。生物体独特的润湿性为设计和创造新的界面材料提供了灵感。本 文综述了飞秒激光微纳制备仿生超疏水和水下超疏油表面的最新研究进展。首先, 介绍了飞秒激光制 备润湿性界面的相关背景, 包括飞秒激光的优点和润湿性的理论基础。然后, 介绍了自然界中具有独 特润湿性的生物、飞秒激光在不同材料上制备超疏水和水下超疏油表面及其相关的重要应用。最后, 提出了该领域目前面临的挑战和未来的展望。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SU B, TIAN Y, JIANG L. Bioinspired interfaces with superwettability: From materials to chemistry [J]. Journal of the American Chemical Society, 2016, 138(6): 1727–1748. DOI: https://doi.org/10.1021/jacs.5b12728.

    Article  Google Scholar 

  2. WU Jun-rui, YIN Kai, XIAO Si, WU Zhi-peng, ZHU Zhuo, DUAN Ji-an, HE Jun. Laser fabrication of bioinspired gradient surfaces for wettability applications [J]. Advanced Materials Interfaces, 2021, 8(5): 2001610. DOI: https://doi.org/10.1002/admi.202001610.

    Article  Google Scholar 

  3. LIU Ming-jie, WANG Shu-tao, JIANG Lei. Nature-inspired superwettability systems [J]. Nature Reviews Materials, 2017, 2: 17036. DOI: https://doi.org/10.1038/natrevmats.2017.36.

    Article  Google Scholar 

  4. YONG Jia-le, CHEN Feng, YANG Qing, HUO Jing-lan, HOU Xun. Superoleophobic surfaces [J]. Chemical Society Reviews, 2017, 46(14): 4168–4217. DOI: https://doi.org/10.1039/c6cs00751a.

    Article  Google Scholar 

  5. WU Z, YIN K, WU J, ZHU Z, DUAN J A, HE J. Recent advances in femtosecond laser-structured Janus membranes with asymmetric surface wettability [J]. Nanoscale, 2021, 13(4): 2209–2226. DOI: https://doi.org/10.1039/d0nr06639g.

    Article  Google Scholar 

  6. WU Jun-rui, HE Jun, YIN Kai, ZHU Zhuo, XIAO Si, WU Zhi-peng, DUAN Ji-an. Robust hierarchical porous PTFE film fabricated via femtosecond laser for self-cleaning passive cooling [J]. Nano Letters, 2021, 21(10): 4209–4216. DOI: https://doi.org/10.1021/acs.nanolett.1c00038.

    Article  Google Scholar 

  7. LIU Guo-liang, ZHANG Chun-hui, LIU Meng-fei, GUO Ziwei, WANG Xin-sheng, YU Cun-ming, CAO Mo-yuan. Smart manipulation of gas bubbles in harsh environments via a fluorinert-infused shape-gradient slippery surface [J]. Transactions of Tianjin University, 2020, 26(6): 441–449. DOI: https://doi.org/10.1007/s12209-020-00263-7.

    Article  Google Scholar 

  8. CHEN Feng, ZHANG Dong-shi, YANG Qing, YONG Jia-le, DU Guang-qing, SI Jin-hai, YUN Feng, HOU Xun. Bioinspired wetting surface via laser microfabrication [J]. ACS Applied Materials & Interfaces, 2013, 5(15): 6777–6792. DOI: https://doi.org/10.1021/am401677z.

    Article  Google Scholar 

  9. YONG Jia-le, YANG Qing, GUO Chun-lei, CHEN Feng, HOU Xun. A review of femtosecond laser-structured superhydrophobic or underwater superoleophobic porous surfaces/materials for efficient oil/water separation [J]. RSC Advances, 2019, 9(22): 12470–12495. DOI: https://doi.org/10.1039/C8RA10673H.

    Article  Google Scholar 

  10. YAO Xi, SONG Yan-lin, JIANG Lei. Applications of bio-inspired special wettable surfaces [J]. Advanced Materials, 2011, 23(6): 719–734. DOI: https://doi.org/10.1002/adma.201002689.

    Article  Google Scholar 

  11. LIU Ke-song, YAO Xi, JIANG Lei. Recent developments in bio-inspired special wettability [J]. Chemical Society Reviews, 2010, 39(8): 3240–3255. DOI: https://doi.org/10.1039/b917112f.

    Article  Google Scholar 

  12. WEN Li-ping, TIAN Ye, JIANG Lei. Bioinspired super-wettability from fundamental research to practical applications [J]. Angewandte Chemie International Edition, 2015, 54(11): 3387–3399. DOI: https://doi.org/10.1002/anie.201409911.

    Article  Google Scholar 

  13. LIU K, DU J, WU J, JIANG L. Superhydrophobic gecko feet with high adhesive forces towards water and their bio-inspired materials [J]. Nanoscale, 2012, 4(3): 768–772. DOI: https://doi.org/10.1039/c1nr11369k.

    Article  Google Scholar 

  14. ZORBA V, STRATAKIS E, BARBEROGLOU M, SPANAKIS E, TZANETAKIS P, ANASTASIADIS S H, FOTAKIS C. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf [J]. Advanced Materials, 2008, 20(21): 4049–4054. DOI: https://doi.org/10.1002/adma.200800651.

    Article  Google Scholar 

  15. PARKER A R, LAWRENCE C R. Water capture by a desert beetle [J]. Nature, 2001, 414(6859): 33–34. DOI: https://doi.org/10.1038/35102108.

    Article  Google Scholar 

  16. FENG Lin, ZHANG Ya-nan, XI Jin-ming, ZHU Ying, WANG N, XIA Fan, JIANG Lei. Petal effect: A superhydrophobic state with high adhesive force [J]. Langmuir, 2008, 24(8): 4114–4119. DOI: https://doi.org/10.1021/la703821h.

    Article  Google Scholar 

  17. BIXLER G D, BHUSHAN B. Rice-and butterfly-wing effect inspired self-cleaning and low drag micro/nanopatterned surfaces in water, oil, and air flow [J]. Nanoscale, 2014, 6(1): 76–96. DOI: https://doi.org/10.1039/c3nr04755e.

    Article  Google Scholar 

  18. SUN Tao-lei, FENG Lin, GAO Xue-feng, JIANG Lei. Bioinspired surfaces with special wettability [J]. ChemInform, 2005, 38(8): 644–652. DOI: https://doi.org/10.1002/chin.200544297.

    Google Scholar 

  19. GAO Xue-feng, JIANG Lei. Water-repellent legs of water striders [J]. Nature, 2004, 432(7013): 36. DOI: https://doi.org/10.1038/432036a.

    Article  Google Scholar 

  20. OH J, DANA C E, HONG S, ROMÁN J K, JO K D, HONG J W, NGUYEN J, CROPEK D M, ALLEYNE M, et al. Exploring the role of habitat on the wettability of cicada wings [J]. ACS Applied Materials & Interfaces, 2017, 9(32): 27173–27184. DOI: https://doi.org/10.1021/acsami.7b07060.

    Article  Google Scholar 

  21. GAO X, YAN X, YAO X, XU L, ZHANG K, ZHANG J, YANG B, JIANG L. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography [J]. Advanced Materials, 2007, 19(17): 2213–2217. DOI: https://doi.org/10.1002/adma.200601946.

    Article  Google Scholar 

  22. SUN Ming-xia, WATSON G S, ZHENG Yong-mei, WATSON J A, LIANG Ai-ping. Wetting properties on nanostructured surfaces of cicada wings [J]. The Journal of Experimental Biology, 2009, 212(19): 3148–3155. DOI: https://doi.org/10.1242/jeb.033373.

    Article  Google Scholar 

  23. LIU Ming-jie, WANG Shu-tao, WEI Zhi-xiang, SONG Yanlin, JIANG Lei. Bioinspired design of a superoleophobic and low adhesive water/solid interface [J]. Advanced Materials, 2009, 21(6): 665–669. DOI: https://doi.org/10.1002/adma.200801782.

    Article  Google Scholar 

  24. LIU Xue-li, ZHOU Jie, XUE Zhong-xin, GAO Jun, MENG Jing-xin, WANG Shu-tao, JIANG Lei. Clam’s shell inspired high-energy inorganic coatings with underwater low adhesive superoleophobicity [J]. Advanced Materials, 2012, 24(25): 3401–3405. DOI: https://doi.org/10.1002/adma.201200797.

    Article  Google Scholar 

  25. CAI Yue, LU Qi-hang, GUO Xing-lin, WANG Shu-tao, QIAO Jin-liang, JIANG Lei. Salt-tolerant superoleophobicity on alginate gel surfaces inspired by seaweed (Saccharina Japonica) [J]. Advanced Materials, 2015, 27(28): 4162–4168. DOI: https://doi.org/10.1002/adma.201404479.

    Article  Google Scholar 

  26. FENG Lin, ZHANG Zhong-yi, MAI Zhen-hong, MA Yongmei, LIU Bi-qian, JIANG Lei, ZHU Dao-ben. A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water [J]. Angewandte Chemie International Edition, 2004, 43(15): 2012–2014. DOI: https://doi.org/10.1002/anie.200353381.

    Article  Google Scholar 

  27. FENG X, FENG L, JIN M, ZHAI J, JIANG L, ZHU D. Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films [J]. Journal of the American Chemical Society, 2004, 126(1): 62–63. DOI: https://doi.org/10.1021/ja038636o.

    Article  Google Scholar 

  28. DUAN Ji-an, DONG Xin-ran, YIN Kai, YANG Shuai, CHU Dong-kai. A hierarchical superaerophilic cone: Robust spontaneous and directional transport of gas bubbles [J]. Applied Physics Letters, 2018, 113(20): 203704. DOI: https://doi.org/10.1063/1.5054623.

    Article  Google Scholar 

  29. WU Dong, WU Si-zhu, CHEN Qi-dai, ZHANG Yong-lai, YAO Jia, YAO Xi, NIU Li-gang, WANG Jiang-nan, JIANG Lei, et al. Curvature-driven reversible in situ switching between pinned and roll-down superhydrophobic states for water droplet transportation [J]. Advanced Materials, 2011, 23(4): 545–549. DOI: https://doi.org/10.1002/adma.201001688.

    Article  Google Scholar 

  30. YIN K, DU H, DONG X, WANG C, DUAN J A, HE J. A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection [J]. Nanoscale, 2017, 9(38): 14620–14626. DOI: https://doi.org/10.1039/c7nr05683d.

    Article  Google Scholar 

  31. WU Dong, CHEN Qi-dai, NIU Li-gang, WANG Jian-nan, WANG Juan, WANG Rui, XIA Hong, SUN Hong-bo. Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices [J]. Lab on a Chip, 2009, 9(16): 2391. DOI: https://doi.org/10.1039/b902159k.

    Article  Google Scholar 

  32. YIN Kai, CHU Dong-kai, DONG Xin-ran, WANG Cong, DUAN Ji-an, HE Jun. Femtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil-water separation [J]. Nanoscale, 2017, 9(37): 14229–14235. DOI: https://doi.org/10.1039/C7NR04582D.

    Article  Google Scholar 

  33. ZHENG Y, BAI H, HUANG Z, TIAN X, NIE F Q, ZHAO Y, ZHAI J, JIANG L. Directional water collection on wetted spider silk [J]. Nature, 2010, 463(7281): 640–643. DOI: https://doi.org/10.1038/nature08729.

    Article  Google Scholar 

  34. FENG L, LI S, LI Y, LI H, ZHANG L, ZHAI J, SONG Y, LIU B, JIANG L, et al. Super-hydrophobic surfaces: From natural to artificial [J]. Advanced Materials, 2002, 14(24): 1857–1860. DOI: https://doi.org/10.1002/adma.200290020.

    Article  Google Scholar 

  35. WENZEL R N. Resistance of solid surfaces to wetting by water [J]. Industrial & Engineering Chemistry, 1936, 28(8): 988–994. DOI: https://doi.org/10.1021/ie50320a024.

    Article  Google Scholar 

  36. GENZER J, EFIMENKO K. Recent developments in superhydrophobic surfaces and their relevance to marine fouling: A review [J]. Biofouling, 2006, 22(5): 339–360. DOI: https://doi.org/10.1080/08927010600980223.

    Article  Google Scholar 

  37. WENZEL R N. Surface roughness and contact angle [J]. The Journal of Physical and Colloid Chemistry, 1949, 53(9): 1466–1467. DOI: https://doi.org/10.1021/j150474a015.

    Article  Google Scholar 

  38. CASSIE A B D, BAXTER S. Wettability of porous surfaces [J]. Transactions of the Faraday Society, 1944, 40: 546. DOI: https://doi.org/10.1039/tf9444000546.

    Article  Google Scholar 

  39. LI Kun-quan, CHEN Wan-juan, WU Wen-jian, PAN Zhi-jie, LIANG Zhao-hao, GAN Jun-jie. Facile fabrication of superhydrophilic/underwater superoleophobic polyvinyl acetate/sodium silicate composite coating for the effective water/oil separation and the study on the anti-fouling property, durability and separation mechanism [J]. Progress in Organic Coatings, 2021, 150: 105979. DOI: https://doi.org/10.1016/j.porgcoat.2020.105979.

    Article  Google Scholar 

  40. DENG Wei, FAN Tian-zhu, LI Ying. In situ biomineralization-constructed superhydrophilic and underwater superoleophobic PVDF-TiO2 membranes for superior antifouling separation of oil-in-water emulsions [J]. Journal of Membrane Science, 2021, 622: 119030. DOI: https://doi.org/10.1016/j.memsci.2020.119030.

    Article  Google Scholar 

  41. LI Wen-tao, YANG Qing, CHEN Feng, YONG Jia-le, FANG Yao, HUO Jing-lan. Femtosecond laser ablated durable superhydrophobic PTFE sheet for oil/water separation [C]//Proc SPIE 10256, Second International Conference on Photonics and Optical Engineering, 2017, 1025: 717–722. DOI: https://doi.org/10.1117/12.2257839.

    Google Scholar 

  42. WANG Jia-peng, WU Ya-li, ZHANG Dong-guang, LI Linghan, WANG Ting, DUAN Shi-ya. Preparation of superhydrophobic flexible tubes with water and blood repellency based on template method [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 587: 124331. DOI: https://doi.org/10.1016/j.colsurfa.2019.124331.

    Article  Google Scholar 

  43. ZHU Tian-xue, CHENG Yan, HUANG Jian-ying, XIONG Jia-qing, GE Ming-zheng, MAO Jia-jun, LIU Ze-kun, DONG Xiu-li, CHEN Zhong, et al. A transparent superhydrophobic coating with mechanochemical robustness for anti-icing, photocatalysis and self-cleaning [J]. Chemical Engineering Journal, 2020, 399: 125746. DOI: https://doi.org/10.1016/j.cej.2020.125746.

    Article  Google Scholar 

  44. CHENG Zhong-jun, LIU Hong-wei, LAI Hua, DU Ying, FU Ke-wei, LI Chong, YU Jian-xin, ZHANG Nai-qing, SUN Kening. Regulating underwater oil adhesion on superoleophobic copper films through assembling n-alkanoic acids [J]. ACS Applied Materials & Interfaces, 2015, 7(36): 20410–20417. DOI: https://doi.org/10.1021/acsami.5b06374.

    Article  Google Scholar 

  45. WANG Hao, GUO Zhi-guang. Design of underwater superoleophobic TiO2 coatings with additional photo-induced self-cleaning properties by one-step route bio-inspired from fish scales [J]. Applied Physics Letters, 2014, 104(18): 183703. DOI: https://doi.org/10.1063/1.4876116.

    Article  Google Scholar 

  46. ZHANG En-shuang, CHENG Zhong-jun, LV T, QIAN Yihao, LIU Yu-yan. Anti-corrosive hierarchical structured copper mesh film with superhydrophilicity and underwater low adhesive superoleophobicity for highly efficient oil — water separation [J]. Journal of Materials Chemistry A, 2015, 3(25): 13411–13417. DOI: https://doi.org/10.1039/c5ta02053k.

    Article  Google Scholar 

  47. YONG Jia-le, CHEN Feng, YANG Qing, JIANG Zhuang-de, HOU Xun. A review of femtosecond-laser-induced underwater superoleophobic surfaces [J]. Advanced Materials Interfaces, 2018, 5(7): 1701370. DOI: https://doi.org/10.1002/admi.201701370.

    Article  Google Scholar 

  48. ZHANG Jing-zhou, CHEN Feng, YANG Qing, YONG Jiale, HUO Jing-lan, FANG Yao, HOU Xun. A widely applicable method to fabricate underwater superoleophobic surfaces with low oil-adhesion on different metals by a femtosecond laser [J]. Applied Physics A, 2017, 123(9): 1–9. DOI: https://doi.org/10.1007/s00339-017-1195-8.

    Article  Google Scholar 

  49. ZHANG Fan, XU Cong, YIN Kai, DUAN Ji-an. Enhanced light extraction of light-emitting diodes with micro patterns by femtosecond laser micromachining for visible light communication [J]. Optics Letters, 2020, 45(24): 6707–6710. DOI: https://doi.org/10.1364/ol.411206.

    Article  Google Scholar 

  50. VOROBYEV A Y, GUO Chun-lei. Direct femtosecond laser surface nano/microstructuring and its applications [J]. Laser & Photonics Reviews, 2013, 7(3): 385–407. DOI: https://doi.org/10.1002/lpor.201200017.

    Article  Google Scholar 

  51. ŽEMAITIS A, MIMIDIS A, PAPADOPOULOS A, GEČYS P, RAČIUKAITIS G, STRATAKIS E, GEDVILAS M. Controlling the wettability of stainless steel from highly-hydrophilic to super-hydrophobic by femtosecond laser-induced ripples and nanospikes [J]. RSC Advances, 2020, 10(62): 37956–37961. DOI: https://doi.org/10.1039/d0ra05665k.

    Article  Google Scholar 

  52. YIN Kai, YANG Shuai, DONG Xin-ran, CHU Dong-kai, DUAN Ji-an, HE Jun. Ultrafast achievement of a superhydrophilic/hydrophobic Janus foam by femtosecond laser ablation for directional water transport and efficient fog harvesting [J]. ACS Applied Materials & Interfaces, 2018, 10(37): 31433–31440. DOI: https://doi.org/10.1021/acsami.8b11894.

    Article  Google Scholar 

  53. KHAN S A, IALYSHEV V, KIM V V, IQBAL M, AL HARMI H, BOLTAEV G S, GANEEV R A, ALNASER A S. Expedited transition in the wettability response of metal meshes structured by femtosecond laser pulses for oil-water separation [J]. Frontiers in Chemistry, 2020, 8: 768. DOI: https://doi.org/10.3389/fchem.2020.00768.

    Article  Google Scholar 

  54. YANG Qi-biao, LV Zhi-hua, WU Tian-yu, CHEN Yang, REN Xiao-ping, CHENG Jian, LOU De-yuan, CHEN Lie, ZHENG Zhong, RUI Quan, LIU Dun. Formation mechanism of gradient wettability of Si3N4 ceramic surface induced using a femtosecond laser [J]. Physica Status Solidi (a), 2020, 217(15): 2000105. DOI: https://doi.org/10.1002/pssa.202000105.

    Article  Google Scholar 

  55. YIN Kai, DONG Xin-ran, ZHANG Fan, WANG Cong, DUAN Ji-an. Superamphiphobic miniature boat fabricated by laser micromachining [J]. Applied Physics Letters, 2017, 110(12): 121909. DOI: https://doi.org/10.1063/1.4979036.

    Article  Google Scholar 

  56. YANG Qi-biao, LV Z, CAI Yu-kui, CHENG Jian, LOU Deyuan, CHEN Lie, LIU Dun. Femtosecond laser processing of AlN ceramics for gradient wettability control [J]. ECS Journal of Solid State Science and Technology, 2020, 9(12): 123010. DOI: https://doi.org/10.1149/2162-8777/abd262.

    Article  Google Scholar 

  57. YIN Kai, DUAN Ji’-an, SUN Xiao-yan, WANG Cong, LUO Zhi. Formation of superwetting surface with line-patterned nanostructure on sapphire induced by femtosecond laser [J]. Applied Physics A, 2015, 119(1): 69–74. DOI: https://doi.org/10.1007/s00339-014-8957-3.

    Article  Google Scholar 

  58. YANG Shuai, YIN Kai, CHU Dong-kai, HE Jun, DUAN Ji-an. Femtosecond laser structuring of Janus foam: Water spontaneous antigravity unidirectional penetration and pumping [J]. Applied Physics Letters, 2018, 113(20): 203701. DOI: https://doi.org/10.1063/1.5061723.

    Article  Google Scholar 

  59. SHEN M Y, CROUCH C H, CAREY J E, MAZUR E. Femtosecond laser-induced formation of submicrometer spikes on silicon in water [J]. Applied Physics Letters, 2004, 85(23): 5694–5696. DOI: https://doi.org/10.1063/1.1828575.

    Article  Google Scholar 

  60. BONSE J, BAUDACH S, KRÜGER J, KAUTEK W, LENZNER M. Femtosecond laser ablation of silicon-modification thresholds and morphology [J]. Applied Physics A, 2002, 74(1): 19–25. DOI: https://doi.org/10.1007/s003390100893.

    Article  Google Scholar 

  61. YIN Kai, YANG Shuai, DONG Xin-ran, CHU Dong-kai, DUAN Ji-an, HE Jun. Robust laser-structured asymmetrical PTFE mesh for underwater directional transportation and continuous collection of gas bubbles [J]. Applied Physics Letters, 2018, 112(24): 243701. DOI: https://doi.org/10.1063/1.5039789.

    Article  Google Scholar 

  62. DAMINELLI G, KRÜGER J, KAUTEK W. Femtosecond laser interaction with silicon under water confinement [J]. Thin Solid Films, 2004, 467(1–2): 334–341. DOI: https://doi.org/10.1016/j.tsf.2004.04.043.

    Article  Google Scholar 

  63. SHEN Meng-yan, CAREY J E, CROUCH C H, KANDYLA M, STONE H A, MAZUR E. High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water [J]. Nano Letters, 2008, 8(7): 2087–2091. DOI: https://doi.org/10.1021/nl080291q.

    Article  Google Scholar 

  64. YIN Kai, WU Zhi-peng, WU Jun-rui, ZHU Zhuo, ZHANG Fan, DUAN Ji-an. Solar-driven thermal-wind synergistic effect on laser-textured superhydrophilic copper foam architectures for ultrahigh efficient vapor generation [J]. Applied Physics Letters, 2021, 118(21): 211905. DOI: https://doi.org/10.1063/5.0050623.

    Article  Google Scholar 

  65. SHEN M Y, CROUCH C H, CAREY J E, YOUNKIN R, MAZUR E, SHEEHY M, FRIEND C M. Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask [J]. Applied Physics Letters, 2003, 82(11): 1715–1717. DOI: https://doi.org/10.1063/1.1561162.

    Article  Google Scholar 

  66. JIAO Yun-long, LI Chuan-zong, JI Jia-wei, WANG Zhaochang, TAO Tong-tong, ZHANG Tao, LIU Kun. Femtosecond laser-induced shape memory polymer micropillar with tunable wettability and reversible adhesion for underwater oil droplet lossless transfer [J]. Applied Physics Letters, 2021, 118(3): 033701. DOI: https://doi.org/10.1063/5.0040990.

    Article  Google Scholar 

  67. LI Ye-jun, ZHOU Xin-feng, QI Wei-hong, XIE Hai-peng, YIN Kai, TONG Yong-gang, HE Jun, GONG Shen, LI Zhou. Ultrafast fabrication of Cu oxide micro/nano-structures via laser ablation to promote oxygen evolution reaction [J]. Chemical Engineering Journal, 2020, 383: 123086. DOI: https://doi.org/10.1016/j.cej.2019.123086.

    Article  Google Scholar 

  68. WU Hao-fei, YIN Kai, QI Wei-hong, ZHOU Xin-feng, HE Jie-ting, LI Jin-ming, LIU Yan-yu, HE Jun, GONG Shen, et al. Rapid fabrication of Ni/NiO@CoFe layered double hydroxide hierarchical nanostructures by femtosecond laser ablation and electrodeposition for efficient overall water splitting [J]. ChemSusChem, 2019, 12(12): 2773–2779. DOI: https://doi.org/10.1002/cssc.201900479.

    Article  Google Scholar 

  69. BAUDACH S, BONSE J, KAUTEK W. Ablation experiments on polyimide with femtosecond laser pulses [J]. Applied Physics A, 1999, 69(1): S395–S398. DOI: https://doi.org/10.1007/s003390051424.

    Article  Google Scholar 

  70. SCHAFFER C B, BRODEUR A, GARCíA J F, MAZUR E. Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy [J]. Optics Letters, 2001, 26(2): 93–95. DOI: https://doi.org/10.1364/ol.26.000093.

    Article  Google Scholar 

  71. KRÜGER J, LENZNER M, MARTIN S, LENNER M, SPIELMANN C, FIEDLER A, KAUTEK W. Single- and multi-pulse femtosecond laser ablation of optical filter materials [J]. Applied Surface Science, 2003, 208–209: 233–237. DOI: https://doi.org/10.1016/S0169-4332(02)01389-2.

    Article  Google Scholar 

  72. KIRKWOOD S E, VAN POPTA A C, TSUI Y Y, FEDOSEJEVS R. Single and multiple shot near-infrared femtosecond laser pulse ablation thresholds of copper [J]. Applied Physics A, 2005, 81(4): 729–735. DOI: https://doi.org/10.1007/s00339-004-3135-7.

    Article  Google Scholar 

  73. YANG Qi-biao, DING Cheng-chao, WANG Li, REN Xiaoping, WANG Yu-tao, LOU De-yuan, CHEN Lie, CHENG Jian, ZHENG Zhong, LIU Dun. Investigating the correlation between surface wettability and morphology parameters of femtosecond laser processed on YT15 [J]. Journal of Laser Applications, 2021, 33(1): 012025. DOI: https://doi.org/10.2351/7.0000237.

    Article  Google Scholar 

  74. CHO S H, CHANG W S, KIM K R, HONG J W. Femtosecond laser embedded grating micromachining of flexible PDMS plates [J]. Optics Communications, 2009, 282(7): 1317–1321. DOI: https://doi.org/10.1016/j.optcom.2008.12.032.

    Article  Google Scholar 

  75. HAQUE M, LEE K K C, HO S, FERNANDES L A, HERMAN P R. Chemical-assisted femtosecond laser writing of lab-in-fibers [J]. Lab on a Chip, 2014, 14(19): 3817–3829. DOI: https://doi.org/10.1039/c4lc00648h.

    Article  Google Scholar 

  76. XI Min, YONG Jia-le, CHEN Feng, YANG Qing, HOU Xun. A femtosecond laser-induced superhygrophobic surface: Beyond superhydrophobicity and repelling various complex liquids [J]. RSC Advances, 2019, 9(12): 6650–6657. DOI: https://doi.org/10.1039/c8ra08328b.

    Article  Google Scholar 

  77. ZHANG X, LIU H, HUANG X, JIANG H. One-step femtosecond laser patterning of light-trapping structure on dye-sensitized solar cell photoelectrodes [J]. J Mater Chem C Mater, 2015, 3(14): 3336–3341. DOI: https://doi.org/10.1039/c4tc02657h.

    Article  Google Scholar 

  78. YIN Kai, YANG Shuai, DONG Xin-ran, CHU Dong-kai, GONG Xiao, DUAN Ji-an. Femtosecond laser fabrication of shape-gradient platform: Underwater bubbles continuous self-driven and unidirectional transportation [J]. Applied Surface Science, 2019, 471: 999–1004. DOI: https://doi.org/10.1016/j.apsusc.2018.12.094.

    Article  Google Scholar 

  79. YIN Kai, DU Hai-feng, LUO Zhi, DONG Xin-ran, DUAN Jian. Multifunctional micro/nano-patterned PTFE near-superamphiphobic surfaces achieved by a femtosecond laser [J]. Surface and Coatings Technology, 2018, 345: 53–60. DOI: https://doi.org/10.1016/j.surfcoat.2018.04.010.

    Article  Google Scholar 

  80. ZHANG Ya-bin, CHEN Yu, SHI Lei, LI Jing, GUO Zhiguang. Recent progress of double-structural and functional materials with special wettability [J]. J Mater Chem, 2012, 22(3): 799–815. DOI: https://doi.org/10.1039/c1jm14327a.

    Article  Google Scholar 

  81. XIA Fan, JIANG Lei. Bio-inspired, smart, multiscale interfacial materials [J]. Advanced Materials, 2008, 20(15): 2842–2858. DOI: https://doi.org/10.1002/adma.200800836.

    Article  Google Scholar 

  82. DELLIEU L, SARRAZIN M, SIMONIS P, DEPARIS O, VIGNERON J P. A two-in-one superhydrophobic and anti-reflective nanodevice in the grey cicada Cicada orni (Hemiptera) [J]. Journal of Applied Physics, 2014, 116(2): 024701. DOI: https://doi.org/10.1063/1.4889849.

    Article  Google Scholar 

  83. YOSHIMITSU Z, NAKAJIMA A, WATANABE T, HASHIMOTO K. Effects of surface structure on the hydrophobicity and sliding behavior of water droplets [J]. Langmuir, 2002, 18(15): 5818–5822. DOI: https://doi.org/10.1021/la020088p.

    Article  Google Scholar 

  84. CHENG Yan, ZHU Tian-xue, LI Shu-hui, HUANG Jianying, MAO Jia-jun, YANG Hui, GAO Shou-wei, CHEN Zhong, LAI Yue-kun. A novel strategy for fabricating robust superhydrophobic fabrics by environmentally-friendly enzyme etching [J]. Chemical Engineering Journal, 2019, 355: 290–298. DOI: https://doi.org/10.1016/j.cej.2018.08.113.

    Article  Google Scholar 

  85. XUE Zhong-xin, LIU Ming-jie, JIANG Lei. Recent developments in polymeric superoleophobic surfaces [J]. Journal of Polymer Science Part B: Polymer Physics, 2012, 50(17): 1209–1224. DOI: https://doi.org/10.1002/polb.23115.

    Article  Google Scholar 

  86. FENG X, JIANG L. Design and creation of superwetting/antiwetting surfaces [J]. Advanced Materials, 2006, 18(23): 3063–3078. DOI: https://doi.org/10.1002/adma.200501961.

    Article  Google Scholar 

  87. LIU Shao-bo, LI Ao-lin, HAN Qiang, YANG Cheng-gang, LI Hong-jian, XIA Hui, OUYANG Fang-ping, ZHOU Jianfei, LIU Xiao-liang. Oxygen-directed porous activation of carbon nanospheres for enhanced capacitive energy storage [J]. Journal of Power Sources, 2021, 483: 229223. DOI: https://doi.org/10.1016/j.jpowsour.2020.229223.

    Article  Google Scholar 

  88. DARMANIN T, GUITTARD F. Recent advances in the potential applications of bioinspired superhydrophobic materials [J]. J Mater Chem A, 2014, 2(39): 16319–16359. DOI: https://doi.org/10.1039/c4ta02071e.

    Article  Google Scholar 

  89. ROACH P, SHIRTCLIFFE N J, NEWTON M I. Progess in superhydrophobic surface development [J]. Soft Matter, 2008, 4(2): 224–240. DOI: https://doi.org/10.1039/b712575p.

    Article  Google Scholar 

  90. JIANG Ting, GUO Zhi-guang, LIU Wei-min. Biomimetic superoleophobic surfaces: Focusing on their fabrication and applications [J]. Journal of Materials Chemistry A, 2015, 3(5): 1811–1827. DOI: https://doi.org/10.1039/c4ta05582a.

    Article  Google Scholar 

  91. YONG Jia-le, CHEN Feng, LI Wen-tao, HUO Jing-lan, FANG Yao, YANG Qing, BIAN Hao, HOU Xun. Underwater superaerophobic and superaerophilic nanoneedles-structured meshes for water/bubbles separation: Removing or collecting gas bubbles in water [J]. Global Challenges, 2018, 2(4): 1700133. DOI: https://doi.org/10.1002/gch2.201700133.

    Article  Google Scholar 

  92. FU Wen-jing, YUAN Xiao-dong, WANG Zhen, YAO Caizhen, ZHANG Rong-zhu. Study on micro-nano structures’ wettability transformation mechanism of femtosecond laser on aluminium alloy [J]. International Journal of Modern Physics B, 2020, 34(10): 2050088. DOI: https://doi.org/10.1142/s0217979220500885.

    Article  Google Scholar 

  93. ZHANG Cheng-yun, CHENG Lang, TAN Bo, CHEN Zhifeng, ZHANG Wei, LIU Zuo-lian, PENG Jun. Directional liquid spreading on laser textured aluminum surface [J]. Microsystem Technologies, 2020, 26(9): 2767–2776. DOI: https://doi.org/10.1007/s00542-020-04914-6.

    Article  Google Scholar 

  94. YAO Cai-zhen, XU Shi-zhen, JIANG Xiao-dong, CHEN Jiaxuan, YUAN Xiao-dong. A simple way to achieve self-cleaning surfaces with unique antifouling property [J]. Journal of Chemistry, 2020: 1–13. DOI: https://doi.org/10.1155/2020/9072432.

  95. HU Song-tao, REDDYHOFF T, PUHAN D, VLADESCU S C, SHI Xi, DINI D, PENG Zhi-ke. Droplet manipulation of hierarchical steel surfaces using femtosecond laser fabrication [J]. Applied Surface Science, 2020, 521: 146474. DOI: https://doi.org/10.1016/j.apsusc.2020.146474.

    Article  Google Scholar 

  96. LIU Tong-wei, WEI Hai-ying, LI Jian-xiang, LU Jian-gang, LIN Qi-da, ZHANG Yi. Wettability control of sapphire by surface texturing in combination with femtosecond laser irradiation and chemical etching [J]. Chemistry Select, 2020, 5(31): 9555–9562. DOI: https://doi.org/10.1002/slct.202002340.

    Google Scholar 

  97. BAI Xue, YANG Qing, FANG Yao, YONG Jia-le, BAI Yongkang, ZHANG Ji-wen, HOU Xun, CHEN Feng. Anisotropic, adhesion-switchable, and thermal-responsive superhydrophobicity on the femtosecond laser-structured shape-memory polymer for droplet manipulation [J]. Chemical Engineering Journal, 2020, 400: 125930. DOI: https://doi.org/10.1016/j.cej.2020.125930.

    Article  Google Scholar 

  98. ZHANG D, CHEN F, YANG Q, YONG J, BIAN H, OU Y, SI J, MENG X, HOU X. A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser [J]. ACS Applied Materials & Interfaces, 2012, 4(9): 4905–4912. DOI: https://doi.org/10.1021/am3012388.

    Article  Google Scholar 

  99. YANG Shuai, ZHU Zhuo, WU Zhi-peng, WU Jun-rui, YIN Kai. Femtosecond laser rapid fabrication of Janus sweat-permeable fabric for personal cooling [J]. Applied Physics Letters, 2020, 117(21): 213701. DOI: https://doi.org/10.1063/5.0029618.

    Article  Google Scholar 

  100. WANG An-dong, JIANG Lan, LI Xiao-wei, XIE Qian, LI Bo-hong, WANG Zhi, DU Kun, LU Yong-feng. Low-adhesive superhydrophobic surface-enhanced Raman spectroscopy substrate fabricated by femtosecond laser ablation for ultratrace molecular detection [J]. Journal of Materials Chemistry B, 2017, 5(4): 777–784. DOI: https://doi.org/10.1039/c6tb02629j.

    Article  Google Scholar 

  101. PAUL JOSHUA S, DINESH BABU P. Effect of laser textured surface with different patterns on tribological characteristics of bearing material AISI 52100 [J]. Journal of Central South University, 2020, 27(8): 2210–2219. DOI: https://doi.org/10.1007/s11771-020-4442-7.

    Article  Google Scholar 

  102. WU Jun-rui, YIN Kai, LI Ming, WU Zhi-peng, XIAO Si, WANG Hua, DUAN Ji-an, HE Jun. Under-oil self-driven and directional transport of water on a femtosecond laser-processed superhydrophilic geometry-gradient structure [J]. Nanoscale, 2020, 12(6): 4077–4084. DOI: https://doi.org/10.1039/c9nr09902f.

    Article  Google Scholar 

  103. YIN Kai, YANG Shuai, WU Jun-rui, LI Ye-jun, CHU Dongkai, HE Jun, DUAN Ji-an. Femtosecond laser induced robust Ti foam based evaporator for efficient solar desalination [J]. Journal of Materials Chemistry A, 2019, 7(14): 8361–8367. DOI: https://doi.org/10.1039/c9ta00291j.

    Article  Google Scholar 

  104. ZHAN Zhi-bing, GARCELL E M, GUO Chun-lei. Robust mold fabricated by femtosecond laser pulses for continuous thermal imprinting of superhydrophobic surfaces [J]. Materials Research Express, 2019, 6(7): 075011.10.1088/2053-1591.

    Article  Google Scholar 

  105. DONG Zhuo-lin, SUN Xiao-yan, KONG De-jian, CHU Dong-kai, HU You-wang, DUAN Ji-an. Spatial light modulated femtosecond laser ablated durable superhydrophobic copper mesh for oil-water separation and self-cleaning [J]. Surface and Coatings Technology, 2020, 402: 126254. DOI: https://doi.org/10.1016/j.surfcoat.2020.126254.

    Article  Google Scholar 

  106. YIN Kai, DUAN Ji-an, WANG Cong, DONG Xin-ran, SONG Yu-xin, LUO Zhi. Micro torch assisted nanostructures’ formation of nickel during femtosecond laser surface interactions [J]. Applied Physics Letters, 2016, 108(24): 241601. https://doi.org/10.1063/1.4954011.

    Article  Google Scholar 

  107. ZHANG Jin-liang, YE Jie-liang, SONG Bo, LI Rui-di, SHI Yu-sheng. Comparative study on microstructure and electrochemical corrosion resistance of Al7075 alloy prepared by laser additive manufacturing and forging technology [J]. Journal of Central South University, 2021, 28(4): 1058–1067. DOI: https://doi.org/10.1007/s11771-021-4679-9.

    Article  Google Scholar 

  108. YIN Kai, WANG Cong, DUAN Ji-an, GUO Chun-lei. Femtosecond laser-induced periodic surface structural formation on sapphire with nanolayered gold coating [J]. Applied Physics A, 2016, 122(9): 1–5. DOI: https://doi.org/10.1007/s00339-016-0361-8.

    Article  Google Scholar 

  109. DAS A, SHUKLA M. Multifunctional hopeite nanocoating on Ti64 substrates by pulsed laser deposition and radio frequency magnetron sputtering for orthopedic implant applications: A comparative study [J]. Journal of Central South University, 2020, 27(8): 2198–2209. DOI: https://doi.org/10.1007/s11771-020-4441-8.

    Article  Google Scholar 

  110. CHENG Z, DU M, LAI H, ZHANG N, SUN K. From petal effect to lotus effect: A facile solution immersion process for the fabrication of super-hydrophobic surfaces with controlled adhesion [J]. Nanoscale, 2013, 5(7): 2776–2783. DOI: https://doi.org/10.1039/c3nr34256e.

    Article  Google Scholar 

  111. LI Jian, LIU Xiao-hong, YE Yin-ping, ZHOU Hui-di, CHEN Jian-min. Fabrication of superhydrophobic CuO surfaces with tunable water adhesion [J]. The Journal of Physical Chemistry C, 2011, 115(11): 4726–4729. DOI: https://doi.org/10.1021/jp111296n.

    Article  Google Scholar 

  112. LIU Ming-jie, JIANG Lei. Switchable adhesion on liquid/solid interfaces [J]. Advanced Functional Materials, 2010, 20(21): 3753–3764. DOI: https://doi.org/10.1002/adfm.201001208.

    Article  Google Scholar 

  113. RAGESH P, ANAND GANESH V, NAIR S V, NAIR A S. A review on ‘self-cleaning and multifunctional materials’ [J]. J Mater Chem A, 2014, 2(36): 14773–14797. DOI: https://doi.org/10.1039/c4ta02542c.

    Article  Google Scholar 

  114. HAO Li-mei, YAN Xiao-le, XIE You, ZHANG Tao, CHEN Zhi. A rapid one-step electrodeposition process for fabrication of superhydrobic surfaces on anode and cathode [J]. Journal of Central South University, 2016, 23(7): 1576–1583. DOI: https://doi.org/10.1007/s11771-016-3211-0.

    Article  Google Scholar 

  115. YONG Jia-le, SINGH S C, ZHAN Zhi-bing, CHEN Feng, GUO Chun-lei. Substrate-independent, fast, and reversible switching between underwater superaerophobicity and aerophilicity on the femtosecond laser-induced superhydrophobic surfaces for selectively repelling or capturing bubbles in water [J]. ACS Applied Materials & Interfaces, 2019, 11(8): 8667–8675. DOI: https://doi.org/10.1021/acsami.8b21465.

    Article  Google Scholar 

  116. LIN Yi, HAN Jin-peng, CAI Ming-yong, LIU Wei-jian, LUO Xiao, ZHANG Hong-jun, ZHONG Min-lin. Durable and robust transparent superhydrophobic glass surfaces fabricated by a femtosecond laser with exceptional water repellency and thermostability [J]. Journal of Materials Chemistry A, 2018, 6(19): 9049–9056. DOI: https://doi.org/10.1039/c8ta01965g.

    Article  Google Scholar 

  117. SARBADA S, SHIN Y C. Superhydrophobic contoured surfaces created on metal and polymer using a femtosecond laser[J]. Applied Surface Science, 2017, 405: 465–475. DOI: https://doi.org/10.1016/j.apsusc.2017.02.019.

    Article  Google Scholar 

  118. YUAN G, LIU Y, NGO C V, GUO C. Rapid fabrication of anti-corrosion and self-healing superhydrophobic aluminum surfaces through environmentally friendly femtosecond laser processing [J]. Optics Express, 2020, 28(24): 35636–35650. DOI: https://doi.org/10.1364/oe.400804.

    Article  Google Scholar 

  119. SHEN Xiao-dong, YANG Liang, FAN Shu-qian, YANG Qin, WU Wen-jie, ZHANG Bing. Colorful and superhydrophobic titanium surfaces textured by obliquely incident femtosecond laser induced micro/nano structures [J]. Optics Communications, 2020, 466: 125687. DOI: https://doi.org/10.1016/j.optcom.2020.125687.

    Article  Google Scholar 

  120. ZHENG Hai-kun, CHANG Shi-nan, MA Guo-jia, WANG Shuo-shuo. Anti-icing performance of superhydrophobic surface fabricated by femtosecond laser composited dual-layers coating [J]. Energy and Buildings, 2020, 223: 110175. DOI: https://doi.org/10.1016/j.enbuild.2020.110175.

    Article  Google Scholar 

  121. BAI Xue, YANG Qing, FANG Yao, ZHANG Jing-zhou, YONG Jia-le, HOU Xun, CHEN Feng. Superhydrophobicity-memory surfaces prepared by a femtosecond laser [J]. Chemical Engineering Journal, 2020, 383: 123143. DOI: https://doi.org/10.1016/j.cej.2019.123143.

    Article  Google Scholar 

  122. LIU Shao-bo, PENG Yu-hui, HAN Qiang, YANG Cheng-gang, DENG Lian-wen, ZHOU Jian-fei, LIU Xiao-liang. Achieving superior energy storage and microwave absorption by simultaneously-controlling active heteroatoms and porosities in carbon nanosheets [J]. Journal of Alloys and Compounds, 2021, 860: 157898. DOI: https://doi.org/10.1016/j.jallcom.2020.157898.

    Article  Google Scholar 

  123. TALESH BAHRAMI H R, AZIZI A, SAFFARI H. Dropwise condensation heat transfer enhancement on surfaces micro/nano structured by a two-step electrodeposition process [J]. Journal of Central South University, 2019, 26(5): 1065–1076. DOI: https://doi.org/10.1007/s11771-019-4071-1.

    Article  Google Scholar 

  124. WU Zhi-peng, YIN Kai, WU Jun-rui, ZHU Zhuo, DUAN Jian, HE Jun. Water droplet rapid spreading transport on femtosecond laser-treated photothermal and superhydrophilic surface [J]. Optics & Laser Technology, 2021, 141: 107099. DOI: https://doi.org/10.1016/j.optlastec.2021.107099.

    Article  Google Scholar 

  125. GAO Xiao-hui, FENG Wen-shuai, ZHU Zhuo, WU Zhipeng, LI Shi, KAN Shu-ting, QIU Xiao-qing, GUO Ai-min, CHEN Wei, YIN Kai. Rapid fabrication of superhydrophilic micro/nanostructured nickel foam toward high-performance glucose sensor [J]. Advanced Materials Interfaces, 2021, 8(7): 2002133. DOI: https://doi.org/10.1002/admi.202002133.

    Article  Google Scholar 

  126. HU Yan-lei, YUAN Hong-wei, LIU Shun-li, NI Jin-cheng, LAO Zhao-xin, XIN Chen, PAN Deng, ZHANG Yi-yuan, ZHU Wu-lin, et al. Chiral assemblies of laser-printed micropillars directed by asymmetrical capillary force [J]. Advanced Materials, 2020, 32(31): 2002356. DOI: https://doi.org/10.1002/adma.202002356.

    Article  Google Scholar 

  127. JIANG Shao-jun, HU Yan-lei, WU Hao, ZHANG Ya-chao, ZHANG Yi-yuan, WANG Yu-long, ZHANG Ying-hui, ZHU Wu-lin, LI Jia-wen, et al. Multifunctional Janus microplates arrays actuated by magnetic fields for water/light switches and bio-inspired assimilatory coloration [J]. Advanced Materials, 2019, 31(15): 1807507. DOI: https://doi.org/10.1002/adma.201807507.

    Article  Google Scholar 

  128. ZHANG Yi-yuan, JIAO Yun-long, LI Chuan-zong, CHEN Chao, LI Jia-wen, HU Yan-lei, WU Dong, CHU Jia-ru. Bioinspired micro/nanostructured surfaces prepared by femtosecond laser direct writing for multi-functional applications [J]. International Journal of Extreme Manufacturing, 2020, 2(3): 032002. DOI: https://doi.org/10.1088/2631-7990/ab95f6.

    Article  Google Scholar 

  129. ZHANG Y, JIAO Y, CHEN C, ZHU S, LI C, LI J, HU Y, WU D, CHU J. Reversible tuning between isotropic and anisotropic sliding by one-direction mechanical stretching on microgrooved slippery surfaces [J]. Langmuir, 2019, 35(32): 10625–10630. DOI: https://doi.org/10.1021/acs.langmuir.9b01035.

    Article  Google Scholar 

  130. BAI Xue, YONG Jia-le, SHAN Chao, FANG Yao, HOU Xun, CHEN Feng. Remote, selective, and in situ manipulation of liquid droplets on a femtosecond laser-structured superhydrophobic shape-memory polymer by near-infrared light [J]. Science China Chemistry, 2021, 64(5): 861–872. DOI: https://doi.org/10.1007/s11426-020-9940-6.

    Article  Google Scholar 

  131. YANG Liang, SHEN Xiao-dong, YANG Qin, LIU Ji-quan, WU Wen-jie, LI Dao-yuan, DU Ji-hong, ZHANG Bing, FAN Shu-qian. Fabrication of biomimetic anisotropic super-hydrophobic surface with rice leaf-like structures by femtosecond laser [J]. Optical Materials, 2021, 112: 110740. DOI: https://doi.org/10.1016/j.optmat.2020.110740.

    Article  Google Scholar 

  132. GE Cheng-fang, YUAN Gan, GUO Chun-lei, NGO C V, LI Wei. Femtosecond laser fabrication of square pillars integrated Siberian-Cocklebur-like microstructures surface for anti-icing [J]. Materials & Design, 2021, 204: 109689. DOI: https://doi.org/10.1016/j.matdes.2021.109689.

    Article  Google Scholar 

  133. LI Min-jing, YANG Qing, CHEN Feng, YONG Jia-le, BIAN Hao, WEI Yang, FANG Yao, HOU Xun. Integration of great water repellence and imaging performance on a superhydrophobic PDMS microlens array by femtosecond laser microfabrication [J]. Advanced Engineering Materials, 2019, 21(3): 1800994. DOI: https://doi.org/10.1002/adem.201800994.

    Article  Google Scholar 

  134. YONG Jia-le, FANG Yao, CHEN Feng, HUO Jing-lan, YANG Qing, BIAN Hao, DU Guang-qing, HOU Xun. Femtosecond laser ablated durable superhydrophobic PTFE films with micro-through-holes for oil/water separation: Separating oil from water and corrosive solutions [J]. Applied Surface Science, 2016, 389: 1148–1155. DOI: https://doi.org/10.1016/j.apsusc.2016.07.075.

    Article  Google Scholar 

  135. FU Pei, SHI Xue-song, JIANG Fang, XU Xue-feng. Superhydrophobic nanostructured copper substrate as sensitive SERS platform prepared by femtosecond laser pulses [J]. Applied Surface Science, 2020, 501: 144269. DOI: https://doi.org/10.1016/j.apsusc.2019.144269.

    Article  Google Scholar 

  136. YONG Jia-le, ZHANG Cheng-jun, BAI Xue, ZHANG Jingzhou, YANG Qing, HOU Xun, CHEN Feng. Designing “supermetalphobic” surfaces that greatly repel liquid metal by femtosecond laser processing: Does the surface chemistry or microstructure play a crucial role? [J]. Advanced Materials Interfaces, 2020, 7(6): 1901931. DOI: https://doi.org/10.1002/admi.201901931.

    Article  Google Scholar 

  137. YONG Jia-le, YANG Qing, CHEN Feng, ZHANG Dong-shi, FAROOQ U, DU Guang-qing, HOU Xun. A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces [J]. J Mater Chem A, 2014, 2(15): 5499–5507. DOI: https://doi.org/10.1039/c3ta14711h.

    Article  Google Scholar 

  138. FENG N, YONG J. Femtosecond laser microfabrication of porous superwetting materials for oil/water separation: A mini-review [J]. Frontiers in Chemistry, 2020, 8: 585723. DOI: https://doi.org/10.3389/fchem.2020.585723.

    Article  Google Scholar 

  139. VOLPE A, GAUDIUSO C, DI VENERE L, LICCIULLI F, GIORDANO F, ANCONA A. Direct femtosecond laser fabrication of superhydrophobic aluminum alloy surfaces with anti-icing properties [J]. Coatings, 2020, 10(6): 587. DOI: https://doi.org/10.3390/coatings10060587.

    Article  Google Scholar 

  140. WU Dong, WU Si-zhu, CHEN Qi-dai, ZHAO Shuai, ZHANG Hao, JIAO Jian, PIERSOL J A, WANG Jian-nan, SUN Hong-bo, et al. Facile creation of hierarchical PDMS microstructures with extreme underwater superoleophobicity for anti-oil application in microfluidic channels [J]. Lab on a Chip, 2011, 11(22): 3873. DOI: https://doi.org/10.1039/c1lc20226j.

    Article  Google Scholar 

  141. LI Guo-qiang, LU Yang, WU Pei-chao, ZHANG Zhen, LI Jia-wen, ZHU Wu-lin, HU Yan-lei, WU Dong, CHU Jia-ru. Fish scale inspired design of underwater superoleophobic microcone arrays by sucrose solution assisted femtosecond laser irradiation for multifunctional liquid manipulation [J]. Journal of Materials Chemistry A, 2015, 3(36): 18675–18683. DOI: https://doi.org/10.1039/c5ta05265c.

    Article  Google Scholar 

  142. LI Guo-qiang, FAN Hua, REN Fei-fei, ZHOU Chen, ZHANG Zhen, XU Bing, WU Si-zhu, HU Yan-lei, ZHU Wulin, LI Jia-wen. Multifunctional ultrathin aluminum foil: oil/water separation and particle filtration[J]. Journal of Materials Chemistry A, 2016, 4(48): 18832–18840. 10.1039/C6TA08231A.

    Article  Google Scholar 

  143. SI Y, DONG Z, JIANG L. Bioinspired designs of superhydrophobic and superhydrophilic materials [J]. ACS Central Science, 2018, 4(9): 1102–1112. DOI: https://doi.org/10.1021/acscentsci.8b00504.

    Article  Google Scholar 

  144. XUE Zhong-xin, WANG Shu-tao, LIN Ling, CHEN Li, LIU Ming-jie, FENG Lin, JIANG Lei. A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation [J]. Advanced Materials, 2011, 23(37): 4270–4273. DOI: https://doi.org/10.1002/adma.201102616.

    Article  Google Scholar 

  145. ZHANG Wen-bin, ZHU Yu-zhang, LIU Xia, WANG Dong, LI Jing-ye, JIANG Lei, JIN Jian. Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions [J]. Angewandte Chemie International Edition, 2014, 53(3): 856–860. DOI: https://doi.org/10.1002/anie.201308183.

    Article  Google Scholar 

  146. TENG Chao, XIE Dan, WANG Jian-feng, ZHU Ying, JIANG Lei. A strong, underwater superoleophobic PNIPAM — clay nanocomposite hydrogel [J]. Journal of Materials Chemistry A, 2016, 4(33): 12884–12888. DOI: https://doi.org/10.1039/c6ta03548e.

    Article  Google Scholar 

  147. XU L P, PENG J, LIU Y, WEN Y, ZHANG X, JIANG L, WANG S. Nacre-inspired design of mechanical stable coating with underwater superoleophobicity [J]. ACS Nano, 2013, 7(6): 5077–5083. DOI: https://doi.org/10.1021/nn400650f.

    Article  Google Scholar 

  148. DAI J, WANG L, WANG Y, TIAN S, TIAN X, XIE A, ZHANG R, YAN Y, PAN J. Robust nacrelike graphene oxide-calcium carbonate hybrid mesh with underwater superoleophobic property for highly efficient oil/water separation [J]. ACS Applied Materials & Interfaces, 2020, 12(4): 4482–4493. DOI: https://doi.org/10.1021/acsami.9b18664.

    Article  Google Scholar 

  149. LIAO Rui, MA Kui, TANG Si-yang, LIU Chang-jun, YUE Hai-rong, LIANG Bin. Biomimetic mineralization to fabricate superhydrophilic and underwater superoleophobic filter mesh for oil — water separations [J]. Industrial & Engineering Chemistry Research, 2020, 59(13): 6226–6235. DOI: https://doi.org/10.1021/acs.iecr.0c00739.

    Article  Google Scholar 

  150. HUANG Xia, MUTLU H, THEATO P. A bioinspired hierarchical underwater superoleophobic surface with reversible pH response [J]. Advanced Materials Interfaces, 2020, 7(8): 2000101. DOI: https://doi.org/10.1002/admi.202000101.

    Article  Google Scholar 

  151. CHEN Chao-lang, CHEN Lei, CHEN Shuai, YU Ya-dong, WENG Ding, MAHMOOD A, WANG Gao-qi, WANG Jiadao. Preparation of underwater superoleophobic membranes via TiO2 electrostatic self-assembly for separation of stratified oil/water mixtures and emulsions [J]. Journal of Membrane Science, 2020, 602: 117976. DOI: https://doi.org/10.1016/j.memsci.2020.117976.

    Article  Google Scholar 

  152. CHENG Yang, YANG Qing, FANG Yao, YONG Jia-le, CHEN Feng, HOU Xun. Underwater superoleophobic tracks: Underwater anisotropic 3D superoleophobic tracks applied for the directional movement of oil droplets and the microdroplets reaction [J]. Advanced Materials Interfaces, 2019, 6(10): 1970066. DOI: https://doi.org/10.1002/admi.201970066.

    Article  Google Scholar 

  153. YE S, CAO Q, WANG Q, WANG T, PENG Q. A highly efficient, stable, durable, and recyclable filter fabricated by femtosecond laser drilling of a titanium foil for oil-water separation [J]. Scientific Reports, 2016, 6: 37591. DOI: https://doi.org/10.1038/srep37591.

    Article  Google Scholar 

  154. YONG Jia-le, YANG Qing, HOU Xun, CHEN Feng. Endowing metal surfaces with underwater superoleophobicity by femtosecond laser processing for oil-water separation application [J]. Frontiers in Physics, 2020, 8: 305. DOI: https://doi.org/10.3389/fphy.2020.00305.

    Article  Google Scholar 

  155. BIAN H, YONG J, YANG Q, HOU X, CHEN F. Simple and low-cost oil/water separation based on the underwater superoleophobicity of the existing materials in our life or nature [J]. Frontiers in Chemistry, 2020, 8: 507. DOI: https://doi.org/10.3389/fchem.2020.00507.

    Article  Google Scholar 

  156. CHU Dong-kai, YIN Kai, DONG Xin-ran, LUO Zhi, DUAN Ji-an. Femtosecond laser fabrication of robust underwater superoleophobic and anti-oil surface on sapphire [J]. AIP Advances, 2017, 7(11): 115224. DOI: https://doi.org/10.1063/1.5009609.

    Article  Google Scholar 

  157. HUO Jing-lan, YANG Qing, CHEN Feng, YONG Jia-le, FANG Yao, ZHANG Jing-zhou, LIU Lin, HOU Xun. Underwater transparent miniature “mechanical hand” based on femtosecond laser-induced controllable oil-adhesive patterned glass for oil droplet manipulation [J]. Langmuir, 2017, 33(15): 3659–3665. DOI: https://doi.org/10.1021/acs.langmuir.7b00393.

    Article  Google Scholar 

  158. BIAN Hao, LIANG Jie, LI Min-jing, ZHANG Fan, WEI Yang. Bioinspired underwater superoleophobic microlens array with remarkable oil-repellent and self-cleaning ability [J]. Frontiers in Chemistry, 2020, 8: 687. DOI: https://doi.org/10.3389/fchem.2020.00687.

    Article  Google Scholar 

  159. YANG Shuai, YIN Kai, WU Jun-rui, WU Zhi-peng, CHU Dong-kai, HE Jun, DUAN Ji-an. Ultrafast nano-structuring of superwetting Ti foam with robust antifouling and stability towards efficient oil-in-water emulsion separation [J]. Nanoscale, 2019, 11(38): 17607–17614. DOI: https://doi.org/10.1039/C9NR04381K.

    Article  Google Scholar 

  160. LI Guo-qiang, ZHANG Zhen, WU Pei-chao, WU Si-zhu, HU Yan-lei, ZHU Wu-lin, LI Jia-wen, WU Dong, LI Xiao-hong, et al. One-step facile fabrication of controllable microcone and micromolar silicon arrays with tunable wettability by liquid-assisted femtosecond laser irradiation [J]. RSC Advances, 2016, 6(44): 37463–37471. DOI: https://doi.org/10.1039/c6ra06949e.

    Article  Google Scholar 

Download references

Funding

Projects(52075557, 51805553) supported by the National Natural Science Foundation of China; Project(ZZYJKT2019-12) supported by the Project of State Key Laboratory of High Performance Complex Manufacturing, China

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Yin  (银恺).

Additional information

Contributors

YIN Kai provided the concept and edited the draft of manuscript. ZHU Zhuo conducted the literature review and wrote the first draft of the manuscript. WU Zhi-peng, HE Yu-chun and WU Ting-ni assisted in completing the literature survey. WU Jun-rui revised the draft of manuscript.

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Wu, Jr., Wu, Zp. et al. Femtosecond laser micro/nano fabrication for bioinspired superhydrophobic or underwater superoleophobic surfaces. J. Cent. South Univ. 28, 3882–3906 (2021). https://doi.org/10.1007/s11771-021-4886-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4886-4

Key words

关键词

Navigation