Skip to main content
Log in

Remote, selective, and in situ manipulation of liquid droplets on a femtosecond laser-structured superhydrophobic shape-memory polymer by near-infrared light

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Droplet manipulation plays a significant role in the fields of biomedical detection, microfluidics, and chemical engineering. However, it still remains a great challenge to simultaneously achieve remote, selective, and in situ droplet manipulation on the same surface. Here, Fe3O4 nanoparticles were doped in a shape-memory polymer (SMP) to prepare a photothermal-responsive Fe3O4-SMP composite which showed remarkable near-infrared (NIR) light-triggered shape-memory property. Superhydrophobic micropillar array was constructed on such Fe3O4-SMP composite through femtosecond laser microfabrication and fluoroalkylsilane modification. The surface wettability of the as-prepared surface can transform from a low-adhesive sliding state to a high-adhesive pinning state as the micropillars are deformed by pressing. Interestingly, the deformed micropillars can stand up and restore to their original morphology under remote NIR light irradiation, resulting in the reversible and repeatable recovery of the ultralow-adhesive superhydrophobicity. With such light-triggered wettability switching, the droplets pinning on the sample surface can be remotely, selectively, and in situ released. Furthermore, the superhydrophobic Fe3O4-SMP surface is successfully applied in lossless liquid transfer, selective droplet release, and droplet-based microreactor. The as-fabricated superhydrophobic surfaces with NIR light-controlled reversible wettability will hold great promise in the fields of liquid manipulation, lab-on-a-chip, and microfluidics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang X, Zhu P, Tian Y, Zhou X, Kong T, Wang L. Nat Commun, 2017, 8: 14831

    Article  Google Scholar 

  2. Tan Y, Hu B, Chu Z, Wu W. Adv Funct Mater, 2019, 29: 1900266

    Article  Google Scholar 

  3. Chowdhury MS, Zheng W, Kumari S, Heyman J, Zhang X, Dey P, Weitz DA, Haag R. Nat Commun, 2019, 10: 4546

    Article  Google Scholar 

  4. Han H, Lee JS, Kim H, Shin S, Lee J, Kim J, Hou X, Cho SW, Seo J, Lee T. ACS Nano, 2018, 12: 932–941

    Article  Google Scholar 

  5. Sun L, Bian F, Wang Y, Wang Y, Zhang X, Zhao Y. Proc Natl Acad Sci USA, 2020, 117: 4527–4532

    Article  Google Scholar 

  6. Shin S, Lee J, Lee S, Kim H, Seo J, Kim D, Hong J, Lee S, Lee T. Small, 2017, 13: 1602865

    Article  Google Scholar 

  7. Lehmann U, Vandevyver C, Parashar VK, Gijs MAM. Angew Chem Int Ed, 2006, 45: 3062–3067

    Article  Google Scholar 

  8. Park JK, Kim S. Lab Chip, 2017, 17: 1793–1801

    Article  Google Scholar 

  9. Huang CJ, Fang WF, Ke MS, Chou HYE, Yang JT. Lab Chip, 2014, 14: 2057–2062

    Article  Google Scholar 

  10. Xing S, Harake RS, Pan T. Lab Chip, 2011, 11: 3642–3648

    Article  Google Scholar 

  11. Lai X, Pu Z, Yu H, Li D. ACS Appl Mater Interfaces, 2020, 12: 1817–1824

    Article  Google Scholar 

  12. Wu Y, Feng J, Gao H, Feng X, Jiang L. Adv Mater, 2019, 31: 1800718

    Article  Google Scholar 

  13. Zhang S, Huang J, Chen Z, Yang S, Lai Y. J Mater Chem A, 2019, 7: 38–63

    Article  Google Scholar 

  14. Ben S, Zhou T, Ma H, Yao J, Ning Y, Tian D, Liu K, Jiang L. Adv Sci, 2019, 6: 1900834

    Article  Google Scholar 

  15. Zhu S, Bian Y, Wu T, Chen C, Jiao Y, Jiang Z, Huang Z, Li E, Li J, Chu J, Hu Y, Wu D, Jiang L. Nano Lett, 2020, 20: 5513–5521

    Article  Google Scholar 

  16. Jiang S, Hu Y, Wu H, Zhang Y, Zhang Y, Wang Y, Zhang Y, Zhu W, Li J, Wu D, Chu J. Adv Mater, 2019, 31: 1807507

    Article  Google Scholar 

  17. Lee WK, Jung WB, Rhee D, Hu J, Lee YAL, Jacobson C, Jung HT, Odom TW. Adv Mater, 2018, 30: 1706657

    Article  Google Scholar 

  18. Zhang E, Wang Y, Lv T, Li L, Cheng Z, Liu Y. Nanoscale, 2015, 7: 6151–6158

    Article  Google Scholar 

  19. Liu Y, Gao H, Li S, Han Z, Ren L. Chem Eng J, 2018, 337: 697–708

    Article  Google Scholar 

  20. Seo J, Lee S, Han H, Jung HB, Hong J, Song G, Cho SM, Park C, Lee W, Lee T. Adv Mater, 2013, 25: 4139–4144

    Article  Google Scholar 

  21. Wu D, Wu SZ, Chen QD, Zhang YL, Yao J, Yao X, Niu LG, Wang JN, Jiang L, Sun HB. Adv Mater, 2011, 23: 545–549

    Article  Google Scholar 

  22. Zhao Q, Qi HJ, Xie T. Prog Polym Sci, 2015, 49–50: 79–120

    Article  Google Scholar 

  23. Habault D, Zhang H, Zhao Y. Chem Soc Rev, 2013, 42: 7244–7256

    Article  Google Scholar 

  24. Lv T, Cheng Z, Zhang D, Zhang E, Zhao Q, Liu Y, Jiang L. ACS Nano, 2016, 10: 9379–9386

    Article  Google Scholar 

  25. Chen CM, Yang S. Adv Mater, 2014, 26: 1283–1288

    Article  Google Scholar 

  26. Wang W, Salazar J, Vahabi H, Joshi-Imre A, Voit WE, Kota AK. Adv Mater, 2017, 29: 1700295

    Article  Google Scholar 

  27. Bai X, Yang Q, Fang Y, Zhang J, Yong J, Hou X, Chen F. Chem Eng J, 2020, 383: 123143

    Article  Google Scholar 

  28. Li C, Jiao Y, Lv X, Wu S, Chen C, Zhang Y, Li J, Hu Y, Wu D, Chu J. ACS Appl Mater Interfaces, 2020, 12: 13464–13472

    Article  Google Scholar 

  29. Li Z, Zhang X, Wang S, Yang Y, Qin B, Wang K, Xie T, Wei Y, Ji Y. Chem Sci, 2016, 7: 4741–4747

    Article  Google Scholar 

  30. Irajizad P, Ray S, Farokhnia N, Hasnain M, Baldelli S, Ghasemi H. Adv Mater Interfaces, 2017, 4: 1700009

    Article  Google Scholar 

  31. Chen C, Huang Z, Shi L, Jiao Y, Zhu S, Li J, Hu Y, Chu J, Wu D, Jiang L. Adv Funct Mater, 2019, 29: 1904766

    Article  Google Scholar 

  32. Zhang F, Xia Y, Liu Y, Leng J. Nanoscale Horiz, 2020, 5: 1155–1173

    Article  Google Scholar 

  33. Liu L, Liu MH, Deng LL, Lin BP, Yang H. J Am Chem Soc, 2017, 139: 11333–11336

    Article  Google Scholar 

  34. Jin B, Song H, Jiang R, Song J, Zhao Q, Xie T. Sci Adv, 2018, 4: eaao3865

    Article  Google Scholar 

  35. He Z, Satarkar N, Xie T, Cheng YT, Hilt JZ. Adv Mater, 2011, 23: 3192–3196

    Article  Google Scholar 

  36. Shanmugam V, Selvakumar S, Yeh CS. Chem Soc Rev, 2014, 43: 6254–6287

    Article  Google Scholar 

  37. Chu M, Shao Y, Peng J, Dai X, Li H, Wu Q, Shi D. Biomaterials, 2013, 34: 4078–4088

    Article  Google Scholar 

  38. Li M, Wang X, Dong B, Sitti M. Nat Commun, 2020, 11: 3988

    Article  Google Scholar 

  39. Yao X, Jing J, Liang F, Yang Z. Macromolecules, 2016, 49: 9618–9625

    Article  Google Scholar 

  40. Shang B, Chen M, Wu L. Small, 2019, 15: 1901888

    Article  Google Scholar 

  41. Zhu CH, Lu Y, Chen JF, Yu SH. Small, 2014, 10: 2796–2800

    Article  Google Scholar 

  42. Shen S, Wang S, Zheng R, Zhu X, Jiang X, Fu D, Yang W. Biomaterials, 2015, 39: 67–74

    Article  Google Scholar 

  43. Liu Y, Pei X, Liu Z, Yu B, Yan P, Zhou F. J Mater Chem A, 2015, 3: 17074–17079

    Article  Google Scholar 

  44. Cassie ABD, Baxter S. Trans Faraday Soc, 1944, 40: 546–551

    Article  Google Scholar 

  45. Wenzel RN. Ind Eng Chem, 1936, 28: 988–994

    Article  Google Scholar 

  46. Yong J, Yang Q, Chen F, Zhang D, Farooq U, Du G, Hou X. J Mater Chem A, 2014, 2: 5499–5507

    Article  Google Scholar 

  47. Yong J, Chen F, Yang Q, Du G, Bian H, Zhang D, Si J, Yun F, Hou X. ACS Appl Mater Interfaces, 2013, 5: 9382–9385

    Article  Google Scholar 

  48. Yong J, Bai X, Yang Q, Hou X, Chen F. J Colloid Interface Sci, 2021, 582: 1203–1212

    Article  Google Scholar 

  49. Kim YH, Zhang L, Yu T, Jin M, Qin D, Xia Y. Small, 2013, 9: 3462–3467

    Article  Google Scholar 

  50. Bannock JH, Krishnadasan SH, Nightingale AM, Yau CP, Khaw K, Burkitt D, Halls JJM, Heeney M, de Mello JC. Adv Funct Mater, 2013, 23: 2123–2129

    Article  Google Scholar 

  51. Wang Y, Liu S, Zhang T, Cong H, Wei Y, Xu J, Ho YP, Kong SK, Ho HP. Lab Chip, 2019, 19: 3870–3879

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2017YFB1104700), the National Natural Science Foundation of China (61875158), the International Joint Research Laboratory for Micro/Nano Manufacturing and Measurement Technologies, the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Chen.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting information

Supplementary material, approximately 6.68 MB.

Supplementary material, approximately 4.69 MB.

Supplementary material, approximately 5.01 MB.

Supplementary material, approximately 4.53 MB.

Supplementary material, approximately 5.39 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, X., Yong, J., Shan, C. et al. Remote, selective, and in situ manipulation of liquid droplets on a femtosecond laser-structured superhydrophobic shape-memory polymer by near-infrared light. Sci. China Chem. 64, 861–872 (2021). https://doi.org/10.1007/s11426-020-9940-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9940-6

Keywords

Navigation