Skip to main content
Log in

Dropwise condensation heat transfer enhancement on surfaces micro/nano structured by a two-step electrodeposition process

两步电沉积微/纳米结构表面的滴状冷凝的热传递

  • Article
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants, heating, ventilating and air conditioning, and refrigeration. Condensation occurs in two different modes including filmwise (FWC) and dropwise (DWC) condensation. DWC occurring on hydrophobic and superhydrophobic surfaces has a much higher heat transfer capacity than FWC. Therefore, wide investigations have been done to produce DWC in recent years. Superhydrophobic surfaces have micro/nano structures with low surface energy. In this study, a two-step electrodeposition process is used to produce micro/nano structures on copper specimens. The surface energy of specimens is reduced by a self-assembled monolayer using ethanol and 1-octadecanethiol solution. The results show that there is an optimum condition for electrodeposition parameters. For example, a surface prepared by 2000 s step time has 5 times greater heat transfer than FWC while a surface with 4000 s step time has nearly the same heat transfer as FWC. The surfaces of the fabricated specimens are examined using XRD and SEM analyses. The SEM analyses of the surfaces show that there are some micro-structures on the surfaces and the surface porosities are reduced by increasing the second step electrodeposition time.

摘要

冷凝是一种重要的传热机制, 在发电厂、采暖、通风、空调、制冷等行业有着广泛的应用。冷凝以两种不同的模式发生, 包括膜状冷凝(FWC)和滴状冷凝(DWC)。在疏水和超疏水表面上发生的滴状冷凝热传递容量远高于膜状冷凝。因此, 近年来对滴状冷凝进行了广泛的研究。超疏水表面具有低表面能的微纳米结构。在本研究中, 采用两步电沉积法在铜表面沉积出微/纳米结构。用乙醇和1-十八硫醇溶液自组装单分子层来降低试样的表面能。结果表明, 电沉积工艺具有最佳的条件。例如, 当第二步电沉积时间为2000 s 时, 滴状冷凝的热传递量是膜状冷凝的5 倍, 而当第二步电沉积时间为4000 s 时, 滴状冷凝(DWC)与膜状冷凝(FWC)热传递几乎相同。使用XRD 和SEM 分析检测制备的试样表面。SEM 分析显示, 在试样表面上存在一些微结构, 通过延长第二步电沉积时间, 可以降低表面孔隙率。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SIAVASHI M, JAMALI M. Optimal selection of annulus radius ratio to enhance heat transfer with minimum entropy generation in developing laminar forced convection of water-Al2O3 nanofluid flow [J]. Journal of Central South University, 2017, 24(8): 1850–1865.

    Article  Google Scholar 

  2. MAHMOODI M, KANDELOUSI S. Kerosene-alumina nanofluid flow and heat transfer for cooling application [J]. Journal of Central South University, 2016, 23(4): 983–990.

    Article  Google Scholar 

  3. LIU Fan-han, XU Jian-xin, WANG Hua. Numerical method and model for calculating thermal storage time for an annular tube with phase change material [J]. Journal of Central South University, 2017, 24(1): 217–226.

    Article  Google Scholar 

  4. NI Ming-long, CHEN Ya-ping, DONG Cong, WU Jia-feng. Numerical simulation of heat transfer and flow of cooling air in triangular wavy fin channels [J]. Journal of Central South University, 2014, 21(7): 2759–2765.

    Article  Google Scholar 

  5. WANG H, TANG L, WU X, DAI W, QIU Y. Fabrication and anti-frosting performance of super hydrophobic coating based on modified nano-sized calcium carbonate and ordinary polyacrylate [J]. Applied Surface Science, 2007, 253(22): 8818–8824.

    Article  Google Scholar 

  6. LATTHE S S, SUDHAGAR P, DEVADOSS A, KUMAR A M, LIU S, TERASHIMA C, NAKATA K, FUJISHIMA A. A mechanically bendable superhydrophobic steel surface with self-cleaning and corrosion-resistant properties [J]. Journal of Materials Chemistry A, 2015, 3(27): 14263–14271.

    Article  Google Scholar 

  7. ALI H M, BRIGGS A. A semi-empirical model for free-convection condensation on horizontal pin-fin tubes [J]. International Journal of Heat and Mass Transfer, 2015, 81: 157–166.

    Article  Google Scholar 

  8. ALI H M, BRIGGS A. Condensation of ethylene glycol on pin-fin tubes: Effect of circumferential pin spacing and thickness [J]. Applied Thermal Engineering, 2012, 49: 9–13.

    Article  Google Scholar 

  9. ALI H M, QASIM M Z. Free convection condensation of steam on horizontal wire wrapped tubes: Effect of wire thermal conductivity, pitch and diameter [J]. Applied Thermal Engineering, 2015, 90: 207–214.

    Article  Google Scholar 

  10. ALI H, KAMRAN M S, ALI H M, FARUKH F, IMRAN S, WANG H S. Marangoni condensation of steam-ethanol mixtures on a horizontal low-finned tube [J]. Applied Thermal Engineering, 2017, 117: 366–375.

    Article  Google Scholar 

  11. SCHMIDT E, SCHURIG W, SELLSCHOPP W. Versuche über die kondensation von wasserdampf in film-und tropfenform [J]. Technische Mechanik und Thermodynamik, 1930, 1(2): 53–63. (in German)

    Google Scholar 

  12. WANG S, YU X, LIANG C, ZHANG Y. Enhanced condensation heat transfer in air-conditioner heat exchanger using superhydrophobic foils [J]. Applied Thermal Engineering, 2018, 137: 758–766.

    Article  Google Scholar 

  13. QUAN X, CHEN S, LI J, CHENG P. Enhanced dropwise condensation by oil infused nano-grass coatings on outer surface of a horizontal copper tube [J]. International Communications in Heat and Mass Transfer, 2018, 91: 11–16.

    Article  Google Scholar 

  14. HOENIG S H, BONNER R W. Dropwise condensation on superhydrophobic microporous wick structures [J]. Journal of Heat Transfer, 2018, 140(7): 071501.

    Google Scholar 

  15. WEN R, LI Q, WU J, WU G, WANG W, CHEN Y, MA X, ZHAO D, YANG R. Hydrophobic copper nanowires for enhancing condensation heat transfer [J]. Nano Energy, 2017, 33: 177–183.

    Article  Google Scholar 

  16. TALESH BAHRAMI H R, AHMADI B, SAFFARI H. Optimal condition for fabricating superhydrophobic copper surfaces with controlled oxidation and modification processes [J]. Materials Letters, 2017, 189(Supplement C): 62–65.

    Article  Google Scholar 

  17. SAFFARI H, SOHRABI B, NOORI M R, TALESH BAHRAMI H R. Optimal condition for fabricating superhydrophobic aluminum surfaces with controlled anodizing processes [J]. Applied Surface Science, 2018, 435: 1322–1328.

    Article  Google Scholar 

  18. TALESH BAHRAMI H R, AHMADI B, SAFFARI H. Preparing superhydrophobic copper surfaces with rose petal or lotus leaf property using a simple etching approach [J]. Materials Research Express, 2017, 4(5): 055014.

    Google Scholar 

  19. HE G, LU S, XU W, YU J, WU B, CUI S. Fabrication of durable superhydrophobic electrodeposited tin surfaces with tremella-like structure on copper substrate [J]. Surface and Coatings Technology, 2017, 309: 590–599.

    Article  Google Scholar 

  20. QING Y, YANG C, YU Z, ZHANG Z, HU Q, LIU C. Large-area fabrication of superhydrophobic zinc surface with reversible wettability switching and anticorrosion [J]. Journal of the Electrochemical Society, 2016, 163(8): D385–D391.

    Article  Google Scholar 

  21. XU L, GUO Y, LIAO Q, ZHANG J, XU D. Morphological control of ZnO nanostructures by electrodeposition [J]. The Journal of Physical Chemistry B, 2005, 109(28): 13519–13522.

    Article  Google Scholar 

  22. TALESH BAHRAMI H R, SAFFARI H. Theoretical study of stable dropwise condensation on an inclined micro/nano-structured tube [J]. International Journal of Refrigeration, 2017, 75(Supplement C): 141–154.

    Article  Google Scholar 

  23. ELIAS J, TENA-ZAERA R, Lévy-Clément C. Electrodeposition of ZnO nanowires with controlled dimensions for photovoltaic applications: Role of buffer layer [J]. Thin Solid Films, 2007, 515(24): 8553–8557.

    Article  Google Scholar 

  24. BAHRAMI H R T, SAFFARI H, BAHRAMI H R T, SAFFARI H. Mathematical modeling and numerical simulation of dropwise condensation on an inclined circular tube [J]. Journal of Aerospace Technology and Management, 2017, 9(4): 476–488.

    Article  Google Scholar 

  25. PATIL C M, SANTHANAM K S V, KANDLIKAR S G. Development of a two-step electrodeposition process for enhancing pool boiling [J]. International Journal of Heat and Mass Transfer, 2014, 79: 989–1001.

    Article  Google Scholar 

  26. GAO J, LU L S, SUN J W, LIU X K, TANG B. Enhanced boiling performance of a nanoporous copper surface by electrodeposition and heat treatment [J]. Heat and Mass Transfer, 2017, 53(3): 947–958.

    Article  Google Scholar 

  27. ALBERTSON C E. Boiling heat transfer surface and method: US4018264A [P]. 1977-04-19.

    Google Scholar 

  28. KIM J H. Enhancement of pool boiling heat transfer using thermally-conductive microporous coating techniques [D]. Arlington: University of Texas, 2006.

    Google Scholar 

  29. El-Genk M S, ALI A F. Enhanced nucleate boiling on copper micro-porous surfaces [J]. International Journal of Multiphase Flow, 2010, 36(10): 780–792.

    Article  Google Scholar 

  30. SAMOYLOV A V, MIRSKY V M, HAO Q, SWART C, SHIRSHOV Y M, WOLFBEIS O S. Nanometer-thick SPPR sensor for gaseous HCl [J]. Sensors and Actuators B: Chemical, 2005, 106(1): 369–372.

    Article  Google Scholar 

  31. KEDZIERSKI M A, III J L W. Design and machining of copper specimens with micro holes for accurate heat transfer measurements [J]. Experimental Heat Transfer, 1993, 6(4): 329–344.

    Article  Google Scholar 

  32. O’NEILL G A, WESTWATER J W. Dropwise condensation of steam on electroplated silver surfaces [J]. International Journal of Heat and Mass Transfer, 1984, 27(9): 1539–1549.

    Article  Google Scholar 

  33. GUO Y, WU H, LI Y, JIANG C, WANG Q, WANG T. Facile fabrication of superhydrophobic Cu(OH)2 nanorod and CuO nanosheet arrays on copper surface [J]. Journal of Nanoscience and Nanotechnology, 2012, 12(3): 1952–1956.

    Article  Google Scholar 

  34. SABLOWSKI J, UNZ S, BECKMANN M. Dropwise condensation on advanced functional surfaces-theory and experimental set-up [J]. Chemical Engineering & Technology, 2017, 40(11): 1966–1974.

    Article  Google Scholar 

  35. KIM S, KIM K J. Dropwise condensation modeling suitable for superhydrophobic surfaces [J]. Journal of Heat Transfer, 2011, 133(8): 081502.

    Google Scholar 

  36. XI J, FENG L, JIANG L. A general approach for fabrication of superhydrophobic and superamphiphobic surfaces [J]. Applied Physics Letters, 2008, 92(5): 053102.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Saffari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talesh Bahrami, H.R., Azizi, A. & Saffari, H. Dropwise condensation heat transfer enhancement on surfaces micro/nano structured by a two-step electrodeposition process. J. Cent. South Univ. 26, 1065–1076 (2019). https://doi.org/10.1007/s11771-019-4071-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4071-1

Key words

关键词

Navigation