Skip to main content
Log in

Sources and Bioactive Properties of Conjugated Dietary Fatty Acids

  • Review
  • Published:
Lipids

Abstract

The group of conjugated fatty acids known as conjugated linoleic acid (CLA) isomers have been extensively studied with regard to their bioactive potential in treating some of the most prominent human health malignancies. However, CLA isomers are not the only group of potentially bioactive conjugated fatty acids currently undergoing study. In this regard, isomers of conjugated α-linolenic acid, conjugated nonadecadienoic acid and conjugated eicosapentaenoic acid, to name but a few, have undergone experimental assessment. These studies have indicated many of these conjugated fatty acid isomers commonly possess anti-carcinogenic, anti-adipogenic, anti-inflammatory and immune modulating properties, a number of which will be discussed in this review. The mechanisms through which these bioactivities are mediated have not yet been fully elucidated. However, existing evidence indicates that these fatty acids may play a role in modulating the expression of several oncogenes, cell cycle regulators, and genes associated with energy metabolism. Despite such bioactive potential, interest in these conjugated fatty acids has remained low relative to the CLA isomers. This may be partly attributed to the relatively recent emergence of these fatty acids as bioactives, but also due to a lack of awareness regarding sources from which they can be produced. In this review, we will also highlight the common sources of these conjugated fatty acids, including plants, algae, microbes and chemosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

apoB:

Apolipoprotein B

c :

cis

CLNA:

Conjugated α-linolenic acids

CDHA:

Conjugated docosahexaenoic acids

CEPA:

Conjugated eicosapentaenoic acids

CGLA:

Conjugated γ-linolenic acid

CLA:

Conjugated linoleic acid

CNA:

Conjugated nonadecadienoic acid

CSA:

Conjugated stearidonic acid

COX:

Cyclooxygenase

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

FAS:

Fatty acid synthase

GIT:

Gastrointestinal tract

N2KO:

Nescient basic helix-loop-helix 2 knockout

PUFA:

Polyunsaturated fatty acids

PAI:

Propionibacterium acnes isomerase

PGE2:

Prostaglandin E2

t :

trans

TG:

Triacylglycerols

Ucp:

Uncoupling proteins

VEGF:

Vascular endothelial growth factor

WAT:

White adipose tissue

References

  1. Christie WW (2003) Lipids: their structure and occurrence. In: Christie WW (ed) Lipid analysis. Isolation, separation, identification and structural analysis of lipids. The Oily Press, Bridgewater, pp 3–36

    Google Scholar 

  2. Allen CF, Good P (1965) Plant lipids. J Am Oil Chem Soc 42:610–614

    Article  CAS  PubMed  Google Scholar 

  3. Salton MR (1971) Bacterial membranes. CRC Crit Rev Microbiol 1(1):161–197

    Article  CAS  PubMed  Google Scholar 

  4. Gilbert LI, Chino H (1974) Transport of lipids in insects. J Lipid Res 15(5):439–456

    CAS  PubMed  Google Scholar 

  5. Goodridge AG (1991) Fatty acid synthesis in eukaryotes. In: Dennis EV, Jean EV (eds) New comprehensive biochemistry, chap 4. Elsevier, Amsterdam, pp 111–139

  6. Harwood JL, Scrimgeour CM (2007) Fatty acid and lipid structure. In: The lipid handbook with CD-ROM, 3rd edn. CRC Press, Boca Raton, pp 1–36

  7. Ha YL, Grimm NK, Pariza MW (1987) Anticarcinogens from fried ground beef: heat-altered derivatives of linoleic acid. Carcinogenesis 8(12):1881–1887

    Article  CAS  PubMed  Google Scholar 

  8. Ha YL, Storkson J, Pariza MW (1990) Inhibition of benzo(a)pyrene-induced mouse forestomach neoplasia by conjugated dienoic derivatives of linoleic acid. Cancer Res 50(4):1097–1101

    CAS  PubMed  Google Scholar 

  9. Pariza MW, Hargraves WA (1985) A beef-derived mutagenesis modulator inhibits initiation of mouse epidermal tumors by 7,12-dimethylbenz[a]anthracene. Carcinogenesis 6(4):591–593

    Article  CAS  PubMed  Google Scholar 

  10. Bhattacharya A, Banu J, Rahman M, Causey J, Fernandes G (2006) Biological effects of conjugated linoleic acids in health and disease. J Nutr Biochem 17(12):789–810

    Article  CAS  PubMed  Google Scholar 

  11. Wahle KW, Heys SD, Rotondo D (2004) Conjugated linoleic acids: are they beneficial or detrimental to health? Prog Lipid Res 43(6):553–587

    Article  CAS  PubMed  Google Scholar 

  12. Dilzer A, Park Y (2012) Implication of conjugated linoleic acid (CLA) in human health. Crit Rev Food Sci Nutr 52(6):488–513

    Article  CAS  PubMed  Google Scholar 

  13. Hennessy AA, Ross RP, Devery R, Stanton C (2011) The health promoting properties of the conjugated isomers of alpha-linolenic acid. Lipids 46(2):105–119

    Article  CAS  PubMed  Google Scholar 

  14. Igarashi M, Miyazawa T (2000) Do conjugated eicosapentaenoic acid and conjugated docosahexaenoic acid induce apoptosis via lipid peroxidation in cultured human tumor cells? Biochem Biophys Res Commun 270(2):649–656

    Article  CAS  PubMed  Google Scholar 

  15. Park Y, Park Y (2012) Conjugated fatty acids increase energy expenditure in part by increasing voluntary movement in mice. Food Chem 133(2):400–409

    Article  CAS  PubMed  Google Scholar 

  16. Takagi T, Itabashi Y (1981) Occurrence of mixtures of geometrical isomers of conjugated octadecatrienoic acids in some seed oils: analysis by open-tubular gas liquid chromatography and high performance liquid chromatography. Lipids 16(7):546–551

    Article  CAS  Google Scholar 

  17. Tulloch AP, Bergter L (1979) Analysis of the conjugated trienoic acid containing oil from Fevillea trilobata by 13C nuclear magnetic resonance spectroscopy. Lipids 14(12):996–1002

    Article  CAS  Google Scholar 

  18. Hopkins CY, Chisholm MJ (1962) Identification of conjugated triene fatty acids in certain seed oils. Can J Chem 40(11):2078–2082

    Article  CAS  Google Scholar 

  19. Gaydou EM, Miralles J, Rasoazanakolona V (1987) Analysis of conjugated octadecatrienoic acids in Momordica balsamina seed oil by GLC and C13 NMR spectroscopy. J Am Oil Chem Soc 64(7):997–1000

    Article  CAS  Google Scholar 

  20. Chisholm MJ, Hopkins CY (1964) Fatty acid composition of some Cucurbitaceae seed oils. Can J Chem 42(3):560–564

    Article  CAS  Google Scholar 

  21. Ahlers NHE, Dennison AC (1954) The spectroscopic examination of snake gourd oils. Chem Ind (Lond) 21:603

    Google Scholar 

  22. Destaillats F, Trottier JP, Galvez JMG, Angers P (2005) Analysis of alpha-linolenic acid biohydrogenation intermediates in milk fat with emphasis on conjugated linolenic acids. J Dairy Sci 88(9):3231–3239

    Article  CAS  PubMed  Google Scholar 

  23. Koba K, Imamura J, Akashoshi A, Kohno-Murase J, Nishizono S, Iwabuchi M, Tanaka K, Sugano M (2007) Genetically modified rapeseed oil containing cis-9,trans-11,cis-13-octadecatrienoic acid affects body fat mass and lipid metabolism in mice. J Agric Food Chem 55(9):3741–3748

    Article  CAS  PubMed  Google Scholar 

  24. Dhar P, Bhattacharyya DK (1998) Nutritional characteristics of oil containing conjugated octadecatrienoic fatty acid. Ann Nutr Metab 42(5):290–296

    Article  CAS  PubMed  Google Scholar 

  25. Sbihi HM, Nehdi IA, Al-Resayes SI (2014) Characterization of white mahlab (Prunus mahaleb L.) seed oil: a rich source of alpha-eleostearic acid. J Food Sci 79(5):C795–C801

    Article  CAS  PubMed  Google Scholar 

  26. Amakura Y, Kondo K, Akiyama H, Ito H, Hatano T, Yoshida T, Maitani T (2006) Characteristic long-chain fatty acid of Pleurocybella porrigens. J Food Hyg Soc Jpn 47(4):178–181

    Article  CAS  Google Scholar 

  27. Gunstone FD, Subbarao F (1967) New tropical seed oils: I. Conjugated trienoic and tetraenoic acids and their oxo derivatives in the seed oils of Chrysobalanus icaco and Parinarium laurinum. Chem Phys Lipids 1(4):349–359

  28. Chisholm MJ, Hopkins CY (1966) Kamlolenic acid and other conjugated fatty acids in certain seed oils. J Am Oil Chem Soc 43(6):390–392

    Article  CAS  Google Scholar 

  29. Yasui Y, Hosokawa M, Kohno H, Tanaka T, Miyashita K (2006) Growth inhibition and apoptosis induction by all-trans-conjugated linolenic acids on human colon cancer cells. Anticancer Res 26(3A):1855–1860

    CAS  PubMed  Google Scholar 

  30. Yamasaki M, Motonaga C, Yokoyama M, Ikezaki A, Kakihara T, Hayasegawa R, Yamasaki K, Sakono M, Sakakibara Y, Suiko M, Nishiyama K (2013) Induction of apoptotic cell death in HL-60 cells by jacaranda seed oil derived fatty acids. J Oleo Sci 62(11):925–932

    Article  CAS  PubMed  Google Scholar 

  31. Nagao K, Yanagita T (2005) Conjugated fatty acids in food and their health benefits. J Biosci Bioeng 100(2):152–157

    Article  CAS  PubMed  Google Scholar 

  32. Kishino S, Ogawa J, Ando A, Shimizu S (2003) Conjugated alpha-linolenic acid production from alpha-linolenic acid by Lactobacillus plantarum AKU 1009a. Eur J Lipid Sci Technol 105(10):572–577

    Article  CAS  Google Scholar 

  33. Hennessy AA, Barrett E, Paul Ross R, Fitzgerald GF, Devery R, Stanton C (2012) The production of conjugated alpha-linolenic, gamma-linolenic and stearidonic acids by strains of bifidobacteria and propionibacteria. Lipids 47(3):313–327

    Article  CAS  PubMed  Google Scholar 

  34. Gorissen L, Raes K, Weckx S, Dannenberger D, Leroy F, De Vuyst L, De Smet S (2010) Production of conjugated linoleic acid and conjugated linolenic acid isomers by Bifidobacterium species. Appl Microbiol Biotechnol 87(6):2257–2266

    Article  CAS  PubMed  Google Scholar 

  35. Yuan GF, Chen XE, Li D (2014) Conjugated linolenic acids and their bioactivities: a review. Food Funct 5(7):1360–1368

    Article  CAS  PubMed  Google Scholar 

  36. Koba K, Akahoshi A, Yamasaki M, Tanaka K, Yamada K, Iwata T, Kamegai T, Tsutsumi K, Sugano M (2002) Dietary conjugated linolenic acid in relation to CLA differently modifies body fat mass and serum and liver lipid levels in rats. Lipids 37(4):343–350

    Article  CAS  PubMed  Google Scholar 

  37. Arao K, Wang YM, Inoue N, Hirata J, Cha JY, Nagao K, Yanagita T (2004) Dietary effect of pomegranate seed oil rich in 9cis, 11trans, 13cis conjugated linolenic acid on lipid metabolism in obese, hyperlipidemic OLETF rats. Lipids Health Dis 3:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Vroegrijk IO, van Diepen JA, van den Berg S, Westbroek I, Keizer H, Gambelli L, Hontecillas R, Bassaganya-Riera J, Zondag GC, Romijn JA, Havekes LM, Voshol PJ (2011) Pomegranate seed oil, a rich source of punicic acid, prevents diet-induced obesity and insulin resistance in mice. Food Chem Toxicol 49(6):1426–1430

    Article  CAS  PubMed  Google Scholar 

  39. Chardigny JM, Hasselwander O, Genty M, Kraemer K, Ptock A, Sebedio JL (2003) Effect of conjugated FA on feed intake, body composition, and liver FA in mice. Lipids 38(9):895–902

    Article  CAS  PubMed  Google Scholar 

  40. Castellano CA, Baillargeon JP, Plourde M, Briand SI, Angers P, Giguere A, Matte JJ (2014) Dietary conjugated alpha-linolenic acid did not improve glucose tolerance in a neonatal pig model. Eur J Nutr 53(3):761–768

    Article  CAS  PubMed  Google Scholar 

  41. Shinohara N, Ito J, Tsuduki T, Honma T, Kijima R, Sugawara S, Arai T, Yamasaki M, Ikezaki A, Yokoyama M, Nishiyama K, Nakagawa K, Miyazawa T, Ikeda I (2012) Jacaric acid, a linolenic acid isomer with a conjugated triene system, reduces stearoyl-CoA desaturase expression in liver of mice. J Oleo Sci 61(8):433–441

    Article  CAS  PubMed  Google Scholar 

  42. Kishino S, Ogawa J, Ando A, Yokozeki K, Shimizu S (2010) Microbial production of conjugated gamma-linolenic acid from gamma-linolenic acid by Lactobacillus plantarum AKU 1009a. J Appl Microbiol 108(6):2012–2018

    Article  CAS  PubMed  Google Scholar 

  43. Wise ML, Hamberg M, Gerwick WH (1994) Biosynthesis of conjugated triene-containing fatty acids by a novel isomerase from the red marine alga Ptilota filicina. Biochemistry 33(51):15223–15232

    Article  CAS  PubMed  Google Scholar 

  44. Spitzer V, Tomberg W, Zucolotto M (1996) Identification of alpha-parinaric acid in the seed oil of Sebastiania brasiliensis Sprengel (Euphorbiaceae). J Am Oil Chem Soc 73(5):569–573

    Article  CAS  Google Scholar 

  45. Bagby MO, Smith CR, Wolff IA (1966) Stereochemistry of α-parinaric acid from Impatiens edgeworthii seed oil. Lipids 1(4):263–267

    Article  CAS  PubMed  Google Scholar 

  46. Endo S, Zhiping G, Takagi T (1991) Lipid components of seven species of Basidiomycota and three species of Ascomycota. J Jpn Oil Chem Soc 40(7):574–577

    Article  CAS  Google Scholar 

  47. Valeem EE, Rizvi MA, Shameel M (2011) Bioactivity, elementology and fatty acid composition of Ulva fasciata Delile from a rocky ledge of Buleji, Pakistan. Int J Phycol Phycochem 7(1):81–90

    CAS  Google Scholar 

  48. Kuklev DV, Smith WL (2004) Synthesis of four isomers of parinaric acid. Chem Phys Lipids 131(2):215–222

    Article  CAS  PubMed  Google Scholar 

  49. Alves SP, Maia MRG, Bessa RJB, Fonseca AJM, Cabrita ARJ (2012) Identification of C18 intermediates formed during stearidonic acid biohydrogenation by rumen microorganisms in vitro. Lipids 47(2):171–183

    Article  CAS  PubMed  Google Scholar 

  50. Bhaskar N, Kinami T, Miyashita K, Park SB, Endo Y, Fujimoto K (2004) Occurrence of conjugated polyenoic fatty acids in seaweeds from the Indian Ocean. Z Naturforsch C 59(5–6):310–314

    CAS  PubMed  Google Scholar 

  51. Tsuzuki T, Tanaka K, Kuwahara S, Miyazawa T (2005) Synthesis of the conjugated trienes 5E,7E,9E,14Z,17Z-eicosapentaenoic acid and 5Z,7E,9E,14Z,17Z-eicosapentaenoic acid, and their induction of apoptosis in DLD-1 colorectal adenocarcinoma cells. Lipids 40(2):147–154

    Article  CAS  PubMed  Google Scholar 

  52. Burgess JR, Delarosa RI, Jacobs RS, Butler A (1991) A new eicosapentaenoic acid formed from arachidonic acid in the coralline red algae Bossiella orbigniana. Lipids 26(2):162–165

    Article  CAS  Google Scholar 

  53. Mohamed YMA, Hansen TV (2011) Synthesis of methyl (5Z,8Z,10E,12E,14Z)-eicosapentaenoate. Tetrahedron Lett 52(10):1057–1059

    Article  CAS  Google Scholar 

  54. Tsuzuki T, Kawakami Y, Suzuki Y, Abe R, Nakagawa K, Miyazawa T (2005) Intake of conjugated eicosapentaenoic acid suppresses lipid accumulation in liver and epididymal adipose tissue in rats. Lipids 40(11):1117–1123

    Article  CAS  PubMed  Google Scholar 

  55. Danbara N, Yuri T, Tsujita-Kyutoku M, Sato M, Senzaki H, Takada H, Hada T, Miyazawa T, Okazaki K, Tsubura A (2004) Conjugated docosahexaenoic acid is a potent inducer of cell cycle arrest and apoptosis and inhibits growth of colo 201 human colon cancer cells. Nutr Cancer 50(1):71–79

    Article  CAS  PubMed  Google Scholar 

  56. Tsujita-Kyutoku M, Yuri T, Danbara N, Senzaki H, Kiyozuka Y, Uehara N, Takada H, Hada T, Miyazawa T, Ogawa Y, Tsubura A (2004) Conjugated docosahexaenoic acid suppresses KPL-1 human breast cancer cell growth in vitro and in vivo: potential mechanisms of action. Breast Cancer Res 6(4):R291–R299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chuang CY, Hsu C, Chao CY, Wein YS, Kuo YH, Huang CJ (2006) Fractionation and identification of 9c, 11t, 13t-conjugated linolenic acid as an activator of PPARalpha in bitter gourd (Momordica charantia L.). J Biomed Sci 13(6):763–772

    Article  CAS  PubMed  Google Scholar 

  58. Chen PH, Chen GC, Yang MF, Hsieh CH, Chuang SH, Yang HL, Kuo YH, Chyuan JH, Chao PM (2012) Bitter melon seed oil-attenuated body fat accumulation in diet-induced obese mice is associated with cAMP-dependent protein kinase activation and cell death in white adipose tissue. J Nutr 142(7):1197–1204

    Article  CAS  PubMed  Google Scholar 

  59. Koba K, Yanagita T (2011) Potential health benefits of pomegranate (Punica granatum) seed oil containing conjugated linolenic acid. In: Preedy VR, Watson RR, Patel VB (eds) Nuts and seeds in health and disease prevention, pp 919–924

  60. Grossmann ME, Mizuno NK, Schuster T, Cleary MP (2010) Punicic acid is an omega-5 fatty acid capable of inhibiting breast cancer proliferation. Int J Oncol 36(2):421–426

    CAS  PubMed  Google Scholar 

  61. Khan GN, Gorin MA, Rosenthal D, Pan Q, Bao LW, Wu ZF, Newman RA, Pawlus AD, Yang P, Lansky EP, Merajver SD (2009) Pomegranate fruit extract impairs invasion and motility in human breast cancer. Integr Cancer Ther 8(3):242–253

    Article  CAS  PubMed  Google Scholar 

  62. Costantini S, Rusolo F, De Vito V, Moccia S, Picariello G, Capone F, Guerriero E, Castello G, Volpe MG (2014) Potential anti-inflammatory effects of the hydrophilic fraction of pomegranate (Punica granatum L.) seed oil on breast cancer cell lines. Molecules (Basel, Switzerland) 19(6):8644–8660

    Article  CAS  Google Scholar 

  63. Khan SA (2009) The role of pomegranate (Punica granatum L.) in colon cancer. Pak J Pharm Sci 22(3):346–348

    PubMed  Google Scholar 

  64. Kobori M, Ohnishi-Kameyama M, Akimoto Y, Yukizaki C, Yoshida M (2008) alpha-Eleostearic acid and its dihydroxy derivative are major apoptosis-inducing components of bitter gourd. J Agric Food Chem 56(22):10515–10520

    Article  CAS  PubMed  Google Scholar 

  65. Yasui Y, Hosokawa M, Kohno H, Tanaka T, Miyashita K (2006) Troglitazone and 9cis, 11trans, 13trans-conjugated linolenic acid: comparison of their antiproliferative and apoptosis-inducing effects on different colon cancer cell lines. Chemotherapy 52(5):220–225

    Article  CAS  PubMed  Google Scholar 

  66. Yasui Y, Hosokawa M, Sahara T, Suzuki R, Ohgiya S, Kohno H, Tanaka T, Miyashita K (2005) Bitter gourd seed fatty acid rich in 9c,11t,13t-conjugated linolenic acid induces apoptosis and up-regulates the GADD45, p53 and PPAR gamma in human colon cancer Caco-2 cells. Prostaglandins Leukot Essent Fatty Acids 73(2):113–119

    Article  CAS  PubMed  Google Scholar 

  67. Moon H-S, Guo D-D, Lee H-G, Choi Y-J, Kang J-S, Jo K, Eom J-M, Yun C-H, Cho C-S (2010) Alpha-eleostearic acid suppresses proliferation of MCF-7 breast cancer cells via activation of PPAR gamma and inhibition of ERK 1/2. Cancer Sci 101(2):396–402

    Article  CAS  PubMed  Google Scholar 

  68. Zhang T, Gao Y, Mao Y, Zhang Q, Lin C, Lin P, Zhang J, Wang X (2012) Growth inhibition and apoptotic effect of alpha-eleostearic acid on human breast cancer cells. J Nat Med 66(1):77–84

    Article  CAS  PubMed  Google Scholar 

  69. Igarashi M, Miyazawa T (2000) Newly recognized cytotoxic effect of conjugated trienoic fatty acids on cultured human tumor cells. Cancer Lett 148(2):173–179

    Article  CAS  PubMed  Google Scholar 

  70. Suzuki R, Noguchi R, Ota T, Abe M, Miyashita K, Kawada T (2001) Cytotoxic effect of conjugated trienoic fatty acids on mouse tumor and human monocytic leukemia cells. Lipids 36(5):477–482

    Article  CAS  PubMed  Google Scholar 

  71. Tsuzuki T, Tokuyama Y, Igarashi M, Miyazawa T (2004) Tumor growth suppression by alpha-eleostearic acid, a linolenic acid isomer with a conjugated triene system, via lipid peroxidation. Carcinogenesis 25(8):1417–1425

    Article  CAS  PubMed  Google Scholar 

  72. Kitamura Y, Yamagishi M, Okazaki K, Umemura T, Imazawa T, Nishikawa A, Matsumoto W, Hirose M (2006) Lack of chemopreventive effects of alpha-eleostearic acid on 7,12-dimethylbenz[a]anthracene (DMBA) and 1,2-dimethylhydrazine (DMH)-induced mammary and colon carcinogenesis in female Sprague-Dawley rats. Food Chem Toxicol 44(2):271–277

    Article  CAS  PubMed  Google Scholar 

  73. Suzuki R, Yasui Y, Kohno H, Miyamoto S, Hosokawa M, Miyashita K, Tanaka T (2006) Catalpa seed oil rich in 9t,11t,13c-conjugated linolenic acid suppresses the development of colonic aberrant crypt foci induced by azoxymethane in rats. Oncol Rep 16(5):989–996

    CAS  PubMed  Google Scholar 

  74. Li Q, Wang H, Ye SH, Xiao S, Xie YP, Liu X, Wang JH (2013) Induction of apoptosis and inhibition of invasion in choriocarcinoma JEG-3 cells by alpha-calendic acid and beta-calendic acid. Prostaglandins Leukot Essent Fatty Acids 89(5):367–376

    Article  CAS  PubMed  Google Scholar 

  75. Kohno H, Suzuki R, Yasui Y, Hosokawa M, Miyashita K, Tanaka T (2004) Pomegranate seed oil rich in conjugated linolenic acid suppresses chemically induced colon carcinogenesis in rats. Cancer Sci 95(6):481–486

    Article  CAS  PubMed  Google Scholar 

  76. Kim ND, Mehta R, Yu WP, Neeman I, Livney T, Amichay A, Poirier D, Nicholls P, Kirby A, Jiang WG, Mansel R, Ramachandran C, Rabi T, Kaplan B, Lansky E (2002) Chemopreventive and adjuvant therapeutic potential of pomegranate (Punica granatum) for human breast cancer. Breast Cancer Res Treat 71(3):203–217

    Article  CAS  PubMed  Google Scholar 

  77. Toi M, Bando H, Ramachandran C, Melnick SJ, Imai A, Fife RS, Carr RE, Oikawa T, Lansky EP (2003) Preliminary studies on the anti-angiogenic potential of pomegranate fractions in vitro and in vivo. Angiogenesis 6(2):121–128

    Article  CAS  PubMed  Google Scholar 

  78. Hora JJ, Maydew ER, Lansky EP, Dwivedi C (2003) Chemopreventive effects of pomegranate seed oil on skin tumor development in CD1 mice. J Med Food 6(3):157–161

    Article  CAS  PubMed  Google Scholar 

  79. Albrecht M, Jiang WG, Kumi-Diaka J, Lansky EP, Gommersall LM, Patel A, Mansel RE, Neeman I, Geldof AA, Campbell MJ (2004) Pomegranate extracts potently suppress proliferation, xenograft growth, and invasion of human prostate cancer cells. J Med Food 7(3):274–283

    Article  CAS  PubMed  Google Scholar 

  80. Lansky EP, Harrison G, Froom P, Jiang WG (2005) Pomegranate (Punica granatum) pure chemicals show possible synergistic inhibition of human PC-3 prostate cancer cell invasion across Matrigel. Investig New Drugs 23(2):121–122

    Article  CAS  Google Scholar 

  81. Kohno H, Yasui Y, Suzuki R, Hosokawa M, Miyashita K, Tanaka T (2004) Dietary seed oil rich in conjugated linolenic acid from bitter melon inhibits azoxymethane-induced rat colon carcinogenesis through elevation of colonic PPAR gamma expression and alteration of lipid composition. Int J Cancer 110(6):896–901

    Article  CAS  PubMed  Google Scholar 

  82. Hennessy AA, Ross RP, Devery R, Stanton C (2016) Bifidobacterially produced, C18:3 and C18:4 conjugated fatty acids exhibit in vitro anti-carcinogenic and anti-microbial activity. EJLT. doi:10.1002/ejlt.201500424

    Google Scholar 

  83. Traynelis VC, Ryken TC, Cornelius AS (1995) Cytotoxicity of cis-parinaric acid in cultured malignant gliomas. Neurosurgery 37(3):484–489

    Article  CAS  PubMed  Google Scholar 

  84. Cornelius AS, Yerram NR, Kratz DA, Spector AA (1991) Cytotoxic effect of cis-parinaric acid in cultured malignant cells. Cancer Res 51(2):6025–6030

    CAS  PubMed  Google Scholar 

  85. Zaheer A, Sahu SK, Ryken TC, Traynelis VC (2007) Cis-parinaric acid effects, cytotoxicity, c-jun N-terminal protein kinase, forkhead transcription factor and Mn-SOD differentially in malignant and normal astrocytes. Neurochem Res 32(1):115–124

    Article  CAS  PubMed  Google Scholar 

  86. Tsuzuki T, Kambe T, Shibata A, Kawakami Y, Nakagawa K, Miyazawa T (2007) Conjugated EPA activates mutant p53 via lipid peroxidation and induces p53-dependent apoptosis in DLD-1 colorectal adenocarcinoma human cells. Biochim Biophys Acta Mol Cell Biol Lipids 1771(1):20–30

    Article  CAS  Google Scholar 

  87. Kumamoto-Yonezawa Y, Sasaki R, Ota Y, Suzuki Y, Fukushima S, Hada T, Uryu K, Sugimura K, Yoshida H, Mizushina Y (2009) Cell cycle arrest triggered by conjugated eicosapentaenoic acid occurs through several mechanisms including G1 checkpoint activation by induced RPA and ATR expression. Biochim Biophys Acta 1790(5):339–346

    Article  CAS  PubMed  Google Scholar 

  88. Tsuzuki T, Shibata A, Kawakami Y, Nakagawa K, Miyazawa T (2007) Conjugated eicosapentaenoic acid inhibits vascular endothelial growth factor-induced angiogenesis by suppressing the migration of human umbilical vein endothelial cells. J Nutr 137(3):641–646

    CAS  PubMed  Google Scholar 

  89. Tsuzuki T, Igarashi M, Miyazawa T (2004) Conjugated eicosapentaenoic acid (EPA) inhibits transplanted tumor growth via membrane lipid peroxidation in nude mice. J Nutr 134(5):1162–1166

    CAS  PubMed  Google Scholar 

  90. Tsuzuki T, Shibata A, Kawakami Y, Nakagaya K, Miyazawa T (2007) Anti-angiogenic effects of conjugated docosahexaenoic acid in vitro and in vivo. Biosci Biotechnol Biochem 71(8):1902–1910

    Article  CAS  PubMed  Google Scholar 

  91. Danbara N, Uehara N, Shikata N, Takada H, Hada T, Tsubura A (2004) Dietary effects of conjugated docosahexaenoic acid on N-methyl-N-nitrosourea-induced mammary carcinogenesis in female Sprague-Dawley rats. Oncol Rep 12(5):1079–1085

    CAS  PubMed  Google Scholar 

  92. Hennessy AA, Ross R, Stanton C, Devery R, Murphy J (2007) Development of dairy based functional foods enriched in conjugated linoleic acid with special reference to rumenic acid. In: Saarela M (ed) Functional dairy products. Woodhead Publishing Ltd, UK, pp 443–494

    Chapter  Google Scholar 

  93. Hennessy AA, Ross RP, Devery R, Stanton C (2009) Optimization of a reconstituted skim milk based medium for enhanced CLA production by bifidobacteria. J Appl Microbiol 106(4):1315–1327

    Article  CAS  PubMed  Google Scholar 

  94. Poonam SD, Pophaly SK, Tomar S, De R Singh (2012) Multifaceted attributes of dairy propionibacteria: a review. World J Microbiol Biotechnol 28(11):3081–3095

    Article  CAS  PubMed  Google Scholar 

  95. Abd El-Salam MH, El-Shibiny S (2014) Conjugated linoleic acid and vaccenic acid contents in cheeses: an overview from the literature. J Food Compos Anal 33(1):117–126

    Article  CAS  Google Scholar 

  96. Lerch S, Shingfield KJ, Ferlay A, Vanhatalo A, Chilliard Y (2012) Rapeseed or linseed in grass-based diets: effects on conjugated linoleic and conjugated linolenic acid isomers in milk fat from Holstein cows over 2 consecutive lactations. J Dairy Sci 95(12):7269–7287

    Article  CAS  PubMed  Google Scholar 

  97. Plourde M, Destaillats F, Chouinard PY, Angers P (2007) Conjugated alpha-linolenic acid isomers in bovine milk and muscle. J Dairy Sci 90(11):5269–5275

    Article  CAS  PubMed  Google Scholar 

  98. Coakley M, Banni S, Johnson MC, Mills S, Devery R, Fitzgerald G, Ross RP, Stanton C (2009) Inhibitory effect of conjugated alpha-linolenic acid from bifidobacteria of intestinal origin on SW480 cancer cells. Lipids 44(3):249–256

    Article  CAS  PubMed  Google Scholar 

  99. Yamasaki M, Kitagawa T, Koyanagi N, Chujo H, Maeda H, Kohno-Murase J, Imamura J, Tachibana H, Yamada K (2006) Dietary effect of pomegranate seed oil on immune function and lipid metabolism in mice. Nutrition 22(1):54–59

    Article  CAS  PubMed  Google Scholar 

  100. Boussetta T, Raad H, Letteron P, Gougerot-Pocidalo MA, Marie JC, Driss F, El-Benna J (2009) Punicic acid a conjugated linolenic acid inhibits TNFα-induced neutrophil hyperactivation and protects from experimental colon inflammation in rats. PLoS One 4(7):e6458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Bassaganya-Riera J, Diguardo M, Climent M, Vives C, de Horna A, Sanchez S, Orpi M, Duran E, Einerhand AWC, O’Shea M, Hontecillas R (2010) Punicic acid modulates mucosal immune responses and prevents gut inflammation through PPAR gamma and delta-dependent mechanisms. FASEB J 24:926.6

    Google Scholar 

  102. Ike K, Uchida Y, Nakamura T, Imai S (2005) Induction of interferon-gamma (IFN-gamma) and T helper 1 (Th1) immune response by bitter gourd extract. J Vet Med Sci 67(5):521–524

    Article  PubMed  Google Scholar 

  103. Lin B, Huang C, Lu H (2013) Use of a bitter melon composition comprising conjugated linolenic acid for alleviating asthma and allergic response in a subject suffering from allergic asthma. Univ Taiwan Nat (Untu-C), p 14

  104. Ogawa J, Kishino S, Ando A, Sugimoto S, Mihara K, Shimizu S (2005) Production of conjugated fatty acids by lactic acid bacteria. J Biosci Bioeng 100(4):355–364

    Article  CAS  PubMed  Google Scholar 

  105. Kishino S, Ogawa J, Yokozeki K, Shimizu S (2009) Metabolic diversity in biohydrogenation of polyunsaturated fatty acids by lactic acid bacteria involving conjugated fatty acid production. Appl Microbiol Biotechnol 84(1):87–97

    Article  CAS  PubMed  Google Scholar 

  106. Sklar LA, Hudson BS, Simoni RD (1977) Conjugated polyene fatty acids as fluorescent probes: binding to bovine serum albumin. Biochemistry 16(23):5100–5108

    Article  CAS  PubMed  Google Scholar 

  107. Fernandes MX, de la Torre JG, Castanho M (2000) A Brownian dynamics simulation of an acyl chain and a trans-parinaric acid molecule confined in a phospholipid bilayer in the gel and liquid-crystal phases. J Phys Chem B 104(48):11579–11584

    Article  CAS  Google Scholar 

  108. Lopes S, Fernandes MX, Prieto M, Castanho M (2001) Orientational order of the polyene fatty acid membrane probe trans-parinaric acid in Langmuir–Blodgett multilayer films. J Phys Chem B 105(2):562–568

    Article  CAS  Google Scholar 

  109. Zsila F, Bikadi Z (2005) trans-Parinaric acid as a versatile spectroscopic label to study ligand binding properties of bovine beta-lactoglobulin. Spectrochim Acta Part A Mol Biomol Spectrosc 62(1–3):666–672

    Article  CAS  Google Scholar 

  110. Drummen GPC, Makkinje M, Verkleij AJ, Op den Kamp JAF, Post JA (2004) Attenuation of lipid peroxidation by antioxidants in rat-1 fibroblasts: comparison of the lipid peroxidation reporter molecules cis-parinaric acid and C11-BODIPY581/(591) in a biological setting. Biochim Biophys Acta Mol Cell Biol Lipids 1636(2–3):136–150

    Article  CAS  Google Scholar 

  111. Steenbergen RHG, Drummen GPC, OpdenKamp JAF, Post JA (1997) The use of cis-parinaric acid to measure lipid peroxidation in cardiomyocytes during ischemia and reperfusion. Biochim Biophys Acta Biomembr 1330(2):127–137

    Article  CAS  Google Scholar 

  112. Drummen GPC, Op den Kamp JAF, Post JA (1999) Validation of the peroxidative indicators, cis-parinaric acid and parinaroyl-phospholipids, in a model system and cultured cardiac myocytes. Biochim Biophys Acta Mol Cell Biol Lipids 1436(3):370–382

    Article  CAS  Google Scholar 

  113. Teerlink T, Musch EE, Bakker SJL, Heine RJ, Scheffer PG (1998) Evaluation of parinaric acid as a probe to monitor LDL in vitro oxidation in type 2 diabetes. Diabetologia 41:A207

    Google Scholar 

  114. Palmer CNA, Wolf CR (1998) cis-Parinaric acid is a ligand for the human peroxisome proliferator activated receptor gamma: development of a novel spectrophotometric assay for the discovery of PPAR gamma ligands. FEBS Lett 431(3):476–480

    Article  CAS  PubMed  Google Scholar 

  115. Traynelis VC, Zaheer A, Sahu SK (2002) Opposite effects of cis-parinaric acid on activities of p38 MAPK and c-Jun N-terminal kinases in malignant rat astrocytoma cells. In: Watanabe K (ed) Developments in neuroscience, proceedings, pp 297–309

  116. Li G, Butz D, Dong B, Park Y, Pariza MW, Cook ME (2006) Selective conjugated fatty acids inhibit guinea pig platelet aggregation. Eur J Pharmacol 545(2–3):93–99

    CAS  PubMed  Google Scholar 

  117. Park Y, Pariza MW (2001) The effects of dietary conjugated nonadecadienoic acid on body composition in mice. Biochim Biophys Acta 1533(3):171–174

    Article  CAS  PubMed  Google Scholar 

  118. Kang KH, Liu W, Albright KJ, Park Y, Pariza MW (2003) trans-10,cis-12 CLA inhibits differentiation of 3T3-L1 adipocytes and decreases PPAR gamma expression. Biochem Biophys Res Commun 303(3):795–799

    Article  CAS  PubMed  Google Scholar 

  119. Park Y, Lee SH, Storkson JM, Liu W, Pariza MW (2005) Conjugated linoleic and conjugated nonadecadienoic acids (CLA & CNA) inhibit adipocytic differentiation of mouse bone marrow stem cells. FASEB J 19(4):A58

    Google Scholar 

  120. Kang K, Kown S, Ha Y, Hwang Y (2004) The effects of conjugated linoleic acid and conjugated nonadecadienoic acid on uncoupling protein (Ucp) genes during differentiation of 3T3-L1 preadipocyte. FASEB J 18(4–5):Abst. 577.16

    Google Scholar 

  121. Kang KJ, Kwon SY, Hwang YH (2006) The modulatory effects of conjugated linoleic acid and conjugated nonadecadienoic acid on FAS and FABP in 3T3-L1 preadipocyte differentiation. FASEB J 20(5):A1349

    Google Scholar 

  122. Park Y, Park Y (2010) Conjugated nonadecadienoic acid is more potent than conjugated linoleic acid on body fat reduction. J Nutr Biochem 21(8):764–773

    Article  CAS  PubMed  Google Scholar 

  123. Schrauwen P, Hoppeler H, Billeter R, Bakker AH, Pendergast DR (2001) Fiber type dependent upregulation of human skeletal muscle UCP2 and UCP3 mRNA expression by high-fat diet. Int J Obes Relat Metab Disord 25(4):449–456

    Article  CAS  PubMed  Google Scholar 

  124. Storkson JM, Park Y, Cook ME, Pariza MW (2005) Effects of trans-10,cis-12 conjugated linoleic acid and cognates on apolipoprotein B secretion in HepG2 cells. Nutr Res 25(4):387–399

    Article  CAS  Google Scholar 

  125. Kim JH, Park Y, Kim D, Good DJ (2013) Dietary conjugated nonadecadienoic acid prevents adult-onset obesity in nescient basic helix-loop-helix 2 knockout mice. J Nutr Biochem 24(3):556–566

    Article  CAS  PubMed  Google Scholar 

  126. Khan M, Fraser A (2012) Cox-2 inhibitors and the risk of cardiovascular thrombotic events. Ir Med J 105(4):119–121

    CAS  PubMed  Google Scholar 

  127. Li G, Dong B, Butz DE, Park Y, Pariza MW, Cook ME (2006) NF-kappa B independent inhibition of lipopolysaccharide-induced cyclooxygenase by a conjugated linoleic acid cognate, conjugated nonadecadienoic acid. Biochim Biophys Acta Mol Cell Biol Lipids 1761(9):969–972

    Article  CAS  Google Scholar 

  128. Li G, Cook ME (2003) Inhibitory effects of conjugated fatty acids on LPS-induced cyclooxygenase protein expression. FASEB J 17(4–5):Abstract No. 152.8

    Google Scholar 

  129. Greenhough A, Smartt HJM, Moore AE, Roberts HR, Williams AC, Paraskeva C, Kaidi A (2009) The COX-2/PGE(2) pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 30(3):377–386

    Article  CAS  PubMed  Google Scholar 

  130. Okada T, Noguchi R, Hosokawa M, Fukunaga K, Nishiyama T, Zaima N, Hirata T, Miyashita K (2008) Effects of trans and conjugated LC N-3 polyunsaturated fatty acids on lipid composition and abdominal fat weight in rats. J Food Sci 73(8):H201–H206

    Article  CAS  PubMed  Google Scholar 

  131. Yonezawa Y, Tsuzuki T, Eitsuka T, Miyazawa T, Hada T, Uryu K, Murakami-Nakai C, Ikawa H, Kuriyama I, Takemura M, Oshige M, Yoshida H, Sakaguchi K, Mizushina Y (2005) Inhibitory effect of conjugated eicosapentaenoic acid on human DNA topoisomerases I and II. Arch Biochem Biophys 435(1):197–206

    Article  CAS  PubMed  Google Scholar 

  132. Yonezawa Y, Hada T, Uryu K, Tsuzuki T, Eitsuka T, Miyazawa T, Murakami-Nakai C, Yoshida H, Mizushina Y (2005) Inhibitory effect of conjugated eicosapentaenoic acid on mammalian DNA polymerase and topoisomerase activities and human cancer cell proliferation. Biochem Pharmacol 70(3):453–460

    Article  CAS  PubMed  Google Scholar 

  133. Kumamoto-Yonezawa Y, Sasaki R, Suzuki Y, Matsui Y, Hada T, Uryu K, Sugimura K, Yoshida H, Mizushina Y (2010) Enhancement of human cancer cell radiosensitivity by conjugated eicosapentaenoic acid—a mammalian DNA polymerase inhibitor. Int J Oncol 36(3):577–584

    CAS  PubMed  Google Scholar 

  134. Nicoletti M (2012) Nutraceuticals and botanicals: overview and perspectives. Int J Food Sci Nutr 63:2–6

    Article  PubMed  Google Scholar 

  135. Herrera-Meza MS, Mendoza-Lopez MR, Garcia-Barradas O, Sanchez-Otero MG, Silva-Hernandez ER, Angulo JO, Oliart-Ros RM (2013) Dietary anhydrous milk fat naturally enriched with conjugated linoleic acid and vaccenic acid modify cardiovascular risk biomarkers in spontaneously hypertensive rats. Int J Food Sci Nutr 64(5):575–586

    Article  CAS  PubMed  Google Scholar 

  136. Cicognini FM, Rossi F, Sigolo S, Gallo A, Prandini A (2014) Contents of conjugated linoleic acid isomers cis9,trans11 and trans10,cis12 in ruminant and non-ruminant meats available in the Italian market. Ital J Anim Sci 13(2):201

    Article  Google Scholar 

  137. Chilliard Y, Glasser F, Ferlay A, Bernard L, Rouel J, Doreau M (2007) Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur J Lipid Sci Technol 109(8):828–855

    Article  CAS  Google Scholar 

  138. Flowers G, Ibrahim SA, AbuGhazaleh AA (2008) Milk fatty acid composition of grazing dairy cows when supplemented with linseed oil. J Dairy Sci 91(2):722–730

    Article  CAS  PubMed  Google Scholar 

  139. Rosa HJD, Rego OA, Silva CCG, Alves SP, Alfaia CMM, Prates JAM, Bessa RJB (2014) Effect of corn supplementation of grass finishing of Holstein bulls on fatty acid composition of meat lipids. J Anim Sci 92(8):3701–3714

    Article  CAS  PubMed  Google Scholar 

  140. Penedo LA, Nunes JC, Gama MAS, Leite PEC, Quirico-Santos TF, Torres AG (2013) Intake of butter naturally enriched with cis9,trans11 conjugated linoleic acid reduces systemic inflammatory mediators in healthy young adults. J Nutr Biochem 24(12):2144–2151

    Article  CAS  PubMed  Google Scholar 

  141. Mele M, Contarini G, Cercaci L, Serra A, Buccioni A, Povolo M, Conte G, Funaro A, Banni S, Lercker G, Secchiari P (2011) Enrichment of Pecorino cheese with conjugated linoleic acid by feeding dairy ewes with extruded linseed: effect on fatty acid and triglycerides composition and on oxidative stability. Int Dairy J 21(5):365–372

    Article  CAS  Google Scholar 

  142. Fukuda S, Furuya H, Suzuki Y, Asanuma N, Hino T (2005) A new strain of Butyrivibrio fibrisolvens that has high ability to isomerize linoleic acid to conjugated linoleic acid. J Gen Appl Microbiol 51(2):105–113

    Article  CAS  PubMed  Google Scholar 

  143. Kim YJ, Liu RH, Rychlik JL, Russell JB (2002) The enrichment of a ruminal bacterium (Megasphaera elsdenii YJ-4) that produces the trans-10, cis-12 isomer of conjugated linoleic acid. J Appl Microbiol 92(5):976–982

    Article  CAS  PubMed  Google Scholar 

  144. Or-Rashid MM, AlZahal O, McBride BW (2008) Studies on the production of conjugated linoleic acid from linoleic and vaccenic acids by mixed rumen protozoa. Appl Microbiol Biotechnol 81(3):533–541

    Article  CAS  PubMed  Google Scholar 

  145. Wallace RJ, McKain N, Shingfield KJ, Devillard E (2007) Isomers of conjugated linoleic acids are synthesized via different mechanisms in ruminal digesta and bacteria. J Lipid Res 48(10):2247–2254

    Article  CAS  PubMed  Google Scholar 

  146. Lee Y (2013) Effect of pH on conjugated linoleic acid (CLA) formation of linolenic acid biohydrogenation by ruminal microorganisms. J Microbiol 51(4):471–476

    Article  CAS  PubMed  Google Scholar 

  147. Lee Y-J, Jenkins TC (2011) Biohydrogenation of linolenic acid to stearic acid by the rumen microbial population yields multiple intermediate conjugated diene isomers. J Nutr 141(8):1445–1450

    Article  CAS  PubMed  Google Scholar 

  148. Jenkins TC, Wallace RJ, Moate PJ, Mosley EE (2008) Board-invited review: recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J Anim Sci 86(2):397–412

    Article  CAS  PubMed  Google Scholar 

  149. Vela Gurovic MS, Raul Gentili A, Lila Olivera N, Susana Rodriguez M (2014) Lactic acid bacteria isolated from fish gut produce conjugated linoleic acid without the addition of exogenous substrate. Process Biochem 49(7):1071–1077

    Article  CAS  Google Scholar 

  150. Peng SS, Deng MD, Grund AD, Rosson RA (2007) Purification and characterization of a membrane-bound linoleic acid isomerase from Clostridium sporogenes. Enzyme Microb Technol 40(4):831–839

    Article  CAS  Google Scholar 

  151. O’Connell KJ, O’Connell Motherway M, Hennessy AA, Brodhun F, Ross RP, Feussner I, Stanton C, Fitzgerald GF, van Sinderen D (2013) Identification and characterization of an oleate hydratase-encoding gene from Bifidobacterium breve. Bioengineered 4(5):313–321

    Article  PubMed  PubMed Central  Google Scholar 

  152. Liavonchanka A, Feussner I (2008) Biochemistry of PUFA double bond isomerases producing conjugated linoleic acid. ChemBioChem 9(12):1867–1872

    Article  CAS  PubMed  Google Scholar 

  153. Liavonchanka A, Rudolph MG, Tittmann K, Hamberg M, Feussner I (2009) On the mechanism of a polyunsaturated fatty acid double bond isomerase from Propionibacterium acnes. J Biol Chem 284(12):8005–8012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kishino S, Park S-B, Takeuchi M, Yokozeki K, Shimizu S, Ogawa J (2011) Novel multi-component enzyme machinery in lactic acid bacteria catalyzing C=C double bond migration useful for conjugated fatty acid synthesis. Biochem Biophys Res Commun 416(1–2):188–193

    Article  CAS  PubMed  Google Scholar 

  155. Irmak S, Dunford NT, Gilliland SE, Banskalieva V, Eisenmenger M (2006) Biocatalysis of linoleic acid to conjugated linoleic acid. Lipids 41(8):771–776

    Article  CAS  PubMed  Google Scholar 

  156. Kishino S, Ogawa J, Yokozeki K, Shimizu S (2011) Linoleic acid isomerase in Lactobacillus plantarum AKU1009a proved to be a multi-component enzyme system requiring oxidoreduction cofactors. Biosci Biotechnol Biochem 75(2):318–322

    Article  CAS  PubMed  Google Scholar 

  157. Verhulst A, Janssen G, Parmentier G, Eyssen H (1987) Isomerization of polyunsaturated long chain fatty acids by propionibacteria. Syst Appl Microbiol 9(1–2):12–15

    Article  CAS  Google Scholar 

  158. Deng M-D, Grund AD, Schneider KJ, Langley KM, Wassink SL, Peng SS, Rosson RA (2007) Linoleic acid isomerase from Propionibacterium acnes: purification, characterization, molecular cloning, and heterologous expression. Appl Biochem Biotechnol 143(3):199–211

    Article  CAS  PubMed  Google Scholar 

  159. Rosberg-Cody E, Johnson MC, Fitzgerald GF, Ross PR, Stanton C (2007) Heterologous expression of linoleic acid isomerase from Propionibacterium acnes and anti-proliferative activity of recombinant trans-10, cis-12 conjugated linoleic acid. Microbiology Sgm 153:2483–2490

    Article  CAS  Google Scholar 

  160. Liavonchanka A, Hornung E, Feussner I, Rudolph MG (2006) Structure and mechanism of the Propionibacterium acnes polyunsaturated fatty acid isomerase. Proc Natl Acad Sci USA 103(8):2576–2581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Villar-Tajadura MA, Rodriguez-Alcala LM, Martin V, Gomez de Segura A, Rodriguez JM, Requena T, Fontecha J (2014) Production of conjugated linoleic and conjugated alpha-linolenic acid in a reconstituted skim milk-based medium by bifidobacterial strains isolated from human breast milk. Biomed Res Int 2014:725406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Ye S, Yu T, Yang H, Li L, Wang H, Xiao S, Wang J (2013) Optimal culture conditions for producing conjugated linoleic acid in skim-milk by co-culture of different Lactobacillus strains. Ann Microbiol 63(2):707–717

    Article  CAS  Google Scholar 

  163. Domagala J, Pluta-Kubica A, Pustkowiak H (2013) Changes in conjugated linoleic acid content in Emmental-type cheese during manufacturing. Czech J Food Sci 31(5):432–437

    CAS  Google Scholar 

  164. Colakoglu H, Gursoy O (2011) Effect of lactic adjunct cultures on conjugated linoleic acid (CLA) concentration of yogurt drink. J Food Agric Environ 9(1):60–64

    CAS  Google Scholar 

  165. Hennessy AA, Ross RP, Fitzgerald GF, Caplice N, Stanton C (2014) Role of the gut in modulating lipoprotein metabolism. Curr Cardiol Rep 16(8):515

    Article  PubMed  Google Scholar 

  166. Vonk RJ, Kalivianakis M, Minich DM, Bijleveld CM, Verkade HJ (1997) The metabolic importance of unabsorbed dietary lipids in the colon. Scand J Gastroenterol Suppl 222:65–67

    CAS  PubMed  Google Scholar 

  167. Ewaschuk JB, Walker JW, Diaz H, Madsen KL (2006) Bioproduction of conjugated linoleic acid by probiotic bacteria occurs in vitro and in vivo in mice. J Nutr 136(6):1483–1487

    CAS  PubMed  Google Scholar 

  168. Bassaganya-Riera J, Viladomiu M, Pedragosa M, De Simone C, Carbo A, Shaykhutdinov R, Jobin C, Arthur JC, Corl BA, Vogel H, Storr M, Hontecillas R (2012) Probiotic bacteria produce conjugated linoleic acid locally in the gut that targets macrophage PPAR gamma to suppress colitis. PLoS One 7(2):e31238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Lee HY, Park JH, Seok SH, Baek MW, Kim DJ, Lee KE, Paek KS, Lee Y, Park JH (2006) Human originated bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice. Biochim Biophys Acta Mol Cell Biol Lipids 1761(7):736–744

    Article  CAS  Google Scholar 

  170. Lee K, Paek K, Lee HY, Park JH, Lee Y (2007) Antiobesity effect of trans-10,cis-12-conjugated linoleic acid-producing Lactobacillus plantarum PL62 on diet-induced obese mice. J Appl Microbiol 103(4):1140–1146

    Article  CAS  PubMed  Google Scholar 

  171. Wall R, Ross RP, Shanahan F, O’Mahony L, O’Mahony C, Coakley M, Hart O, Lawlor P, Quigley EM, Kiely B, Fitzgerald GF, Stanton C (2009) Metabolic activity of the enteric microbiota influences the fatty acid composition of murine and porcine liver and adipose tissues. Am J Clin Nutr 89(5):1393–1401

    Article  CAS  PubMed  Google Scholar 

  172. Lee K, Lee Y (2009) Production of c9,t11- and t10,c12-conjugated linoleic acids in humans by Lactobacillus rhamnosus PL60. J Microbiol Biotechnol 19(12):1617–1619

    Article  CAS  PubMed  Google Scholar 

  173. Sartor RB (2008) Microbial influences in inflammatory bowel diseases. Gastroenterology 134(2):577–594

    Article  CAS  PubMed  Google Scholar 

  174. Cotter PD (2011) Small intestine and microbiota. Curr Opin Gastroenterol 27(2):99–105

    Article  PubMed  Google Scholar 

  175. O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7(7):688–693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Druart C, Neyrinck AM, Vlaeminck B, Fievez V, Cani PD, Delzenne NM (2014) Role of the lower and upper intestine in the production and absorption of gut microbiota-derived PUFA metabolites. PLoS One 9(1):e87560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This review was funded in part by EU project QLK1-2001-02362 and by the APC Microbiome Institute supported by Science Foundation Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Stanton.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hennessy, A.A., Ross, P.R., Fitzgerald, G.F. et al. Sources and Bioactive Properties of Conjugated Dietary Fatty Acids. Lipids 51, 377–397 (2016). https://doi.org/10.1007/s11745-016-4135-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-016-4135-z

Keywords

Navigation