Skip to main content
Log in

Optimal culture conditions for producing conjugated linoleic acid in skim-milk by co-culture of different Lactobacillus strains

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The ability of different Lactobacillus strains to produce conjugated linoleic acid (CLA) was determined. Three species—Lactobacillus plantarum (Lp), Lactobacillus acidophilus (La) and Streptococcus thermophilus (St)—were co-cultured in a medium containing skim-milk supplemented with hydrolyzed safflower oil. This study was aimed at future applications in dairy products. The optimal operation parameters were established by response surface methodology. More CLA was produced by co-culture than by single strain culture. The CLA produced by co-culture of La and Lp (La–Lp) was more than that produced by La and St (La–St). Maximum CLA production of 316.52 μg/mL was obtained with La–Lp co-culture using a substrate concentration of 5.0 %, inoculum size of 5.0 %, an initial medium pH of 6.4 and a temperature of 36.4 °C for 48 h. To our knowledge, this is the first report in the literature of the use of co-cultures of La–St and La–Lp to produce CLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a–e
Fig. 4

Similar content being viewed by others

References

  • Aldai N, Osoro K, Barrón LJ, Nájera AI (2006) Gas–liquid chromatographic method for analyzing complex mixtures of fatty acids including conjugated linoleic acids (cis9trans11 and trans10cis12 isomers) and long-chain (n-3 or n-6) polyunsaturated fatty acids. Application to the intramuscular fat of beef meat. J Chromatogr A 1110(1–2):133–139

    PubMed  CAS  Google Scholar 

  • Allen RR (1981) Hydrogenation. World Conference on Soya Progressing & Utilization. pp 166–169

  • Alonso L, Cuesta EP, Gilliland SE (2003) Production of free conjugated linoleic acid by Lactobacillus acidophilus and Lactobacillus casei of human intestinal origin. J Dairy Sci 86:1941–1946

    Article  PubMed  CAS  Google Scholar 

  • Belury M (1995) Conjugated dienoic linoleate: a polyunsaturated fatty acid with unique chemoprotective properties. Nutr Rev 53:83–89

    Article  PubMed  CAS  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    Article  CAS  Google Scholar 

  • Box GEP (1954) The exploration and exploitation of response surfaces, some general considerations and examples. Biometrics 10:16–60

    Article  Google Scholar 

  • Buccioni A, Rapaccini S, Antongiovanni M, Minieri S, Conte G, Mele M (2010) Conjugated linoleic acid and C18:1 isomers content in milk fat of sheep and their transfer to Pecorino Toscano cheese. Int Dairy J 20:190–194

    Article  CAS  Google Scholar 

  • Cao J, Wei M, Zeng S, Chen XJ, Wang CH (2004) Purification and characterization of linoleate isomerase from Lactobacillus acidophilus. Food Ferment Ind 30(2):48–52

    CAS  Google Scholar 

  • Chin SF, Liu W, Storkson JM, Ha YL, Pariza MW (1992) Dietary sources of conjugated dienoic isomers of linoleic acids, a newly recognized class of anticarcinogens. J Food Compos Anal 5:185–197

    Article  CAS  Google Scholar 

  • Chin SF, Storkson JM, Liu W, Albright KJ, Pariza MW (1994) Conjugated linoleic acid (9,11- and 10, 12-octadecadienoic acid) is produced in conventional but not germ-free rats fed linoleic acid. J Nutr 124:694–701

    PubMed  CAS  Google Scholar 

  • Christie WW, Dobson G, Gunstone FD (1997) Isomers in commercial samples of conjugated linoleic acid. Lipids 32:1231–1236

    Article  PubMed  CAS  Google Scholar 

  • Coakley M, Ross RP, Nordgren M, Fitzgerald G, Devery R, Stanton C (2003) Conjugated linoleic acid biosynthesis by human-derived Bifidobacterium species. J Appl Microbiol 94:138–145

    Article  PubMed  CAS  Google Scholar 

  • Cornell JA (1992) How to apply response surface methodology. ASQC basic reference in quality control. ASQC, Milwaukee, pp 190–198

    Google Scholar 

  • Decker EA (1995) The role of phenolics, conjugated linoleic acid, carnosine, and pyrroloquinoline quinone as nonessential dietary antioxidants. Nutr Rev 53:49–58

    Article  PubMed  CAS  Google Scholar 

  • do Espirito Santo AP, Silva RC, Soares FASM, Anjos D, Gioielli LA, Oliveira MN (2010) Acai pulp addition improves fatty acid profile and probiotic viability in yoghurt. Int Dairy J 20:415–422

    Article  Google Scholar 

  • Fogerty AC, Ford GL, Svoronos D (1998) Octadeca-9,11-dienoic acid in foodstuffs and in the lipids of human blood and breast milk. Nutr Rep Int 38:937–944

    Google Scholar 

  • Gangidi RR, Proctor A (2004) Photochemical production of conjugated linoleic acid from soybean oil. Lipid 6:577–582

    Article  Google Scholar 

  • Hayek MG, Han SN, Wu D, Watkins BA, Meydani M, Dorsey JL, Smith DE, Meydani SN (1999) Dietary conjugated linoleic acid influences the immune response of young and old C57BL/6NCrlBR mice. J Nutr 129:32–38

    PubMed  CAS  Google Scholar 

  • Houseknecht KL, Vanden Heuvel JP, Moya-Camarena SY, Portocarrero CP, Peck LW, Nickel KP, Belury MA (1998) Dietary conjugated linoleic acid normalizes impaired glucose tolerance in zucker diabetic fatty rat. Biochem Biophys Res Commun 244:678–682

    Article  PubMed  CAS  Google Scholar 

  • Huang YC, Luedecke LO, Shultz TD (1994) Effect of cheddar cheese consumption on plasma conjugated linoleic acid in men. Nutr Res 3:373–386

    Article  Google Scholar 

  • ISO (2002) Standard 15884. Milk fat. Preparation of fatty acid methyl esters. International Organization for Standardization, Geneva

    Google Scholar 

  • Jiang J, Bjrock L, Fondon R (1998) Production of conjugated linoleic acid by dairy starter cultures. J Appl Microbiol 85:95–102

    Article  PubMed  CAS  Google Scholar 

  • Jun O, Shigenobu K, Akinori A, Satoshi S, Kousuke M, Sakayu S (2005) Production of conjugated fatty acids by lactic acid bacteria. J Biosci Bioeng 4:355–364

    Google Scholar 

  • Kim YJ, Liu RH (2000) Selective increase in conjugated linoleic acid in milk fat by crystallization. J Food Sci 5:792–795

    Google Scholar 

  • Kim YJ, Liu RH, Bond DR, Russell JB (2000) Effect of linoleic acid concentration on conjugated linoleic acid (CLA) production by Butyrivibrio fibrisolvens A38. Appl Environ Microbiol 66:5226–5230

    Article  PubMed  CAS  Google Scholar 

  • Kimoto N, Hirose M, Futakuchi M, Iwata T, Kasai M, Shirai T (2001) Site-dependent modulating effects of conjugated fatty acids from safflower oil in a rat two-stage carcinogenesis model in female Sprague-Dawley rats. Cancer Letter 168:15–21

    Article  CAS  Google Scholar 

  • Kropp KG, Andersson JT, Fedorak PM (1997) Biotransformations of three dimethydibenzothiophenes by pure and mixed bacteria. Environ Sci Technol 31(5):1547–1554

    Article  CAS  Google Scholar 

  • Lee SO, Kim CS, Cho SK, Choi HJ, Ji GE, Oh DK (2003) Bioconversion of linoleic acid into conjugated linoleic acid during fermentation and by washed cells of Lactobacillus reuteri. Biotechnol Lett 25:935–938

    Article  PubMed  CAS  Google Scholar 

  • Li P, Ye SH, Wang JH, Guo WQ (2009) Optimization of conjugated linoleic acid production with Lactobacillus acidophilus. China Brew 12:56–58

    Google Scholar 

  • Lin TY (2000) Conjugated linoleic acid concentration as affected by lactic cultures and additives. Food Chem 1:27–31

    Article  Google Scholar 

  • Lin TY (2006) Conjugated linoleic acid production by cells and enzyme extract of Lactobacillus delbrueckii ssp. bulgaricus with additions of different fatty acids. Food Chem 94:437–441

    Article  CAS  Google Scholar 

  • Lin TY, Lin CW, Wang YJ (2002) Linoleic acid isomerase activity in enzyme extracts from Lactobacillus acidophilus and Propionibacterium freudenreichii ssp. shermanii. J Food Sci 4:1502–1505

    Article  Google Scholar 

  • Mason RL, Gunst RF, Hess JL (1989) Statistical design and analysis of experiments with applications to engineering and science. Wiley, New York, pp 45–60

    Google Scholar 

  • Miao S, Zhang Z, Liu P, Chai Q, Hu J, Sun J (2005) Purification and characterization of a linoleic acid isomerase from a Lactobacillus plantarum. Food Ferment Ind 31(3):12–15

    CAS  Google Scholar 

  • Muller A, Markus MB, Geyer R, Ringseis R, Eder K, Steinhart H (2006) Identification of conjugated linoleic acid elongation and beta-oxidation products by coupled silver-ion HPLC APPI-MS. J Chromatogr B Anal Technol Biomed Life Sci 837(1–2):147–152

    Article  Google Scholar 

  • Nag JC, Hui GP, Young JK, In HK, Hye SK, Chil SY, Ho GY, Suil P, Jae WL, Soo HC (2008) Utilization of monolinolein as a substrate for conjugated linoleic acid production by Bifidobacterium breve LMC 520 of human neonatal origin. J Agric Food Chem 56:10908–10912

    Article  Google Scholar 

  • Nicolosi R, Rogers E, Kritchevsky D, Scimeca J, Huth P (1997) Dietary conjugated linoleic acid reduces plasma lipoproteins and early aortic atherosclerosis in hypercholesterolemic hamsters. Artery 22:266–277

    PubMed  CAS  Google Scholar 

  • Oliveira RPS, Florence ACR, Silva RC, Perego P, Converti A, Gioielli LA, Oliveira MN (2009) Effect of different prebiotics on the fermentation kinetics, probiotic survival and fatty acids profiles in nonfat symbiotic fermented milk. Int J Food Microbiol 128:467–472

    Article  PubMed  CAS  Google Scholar 

  • Park Y, Mcguire M, Behr R, Evans M, Schultz T (1999) High-fat dietary product consumption increase 9c-,11t-18:2 (rumenic acid) and total lipid concentration of human milk. Lipids 34:543–549

    Article  PubMed  CAS  Google Scholar 

  • Parodi PW (1996) Milk fat components: possible chemopreventive agents for cancer and other diseases. Aust J Dairy Technol 51:24–32

    CAS  Google Scholar 

  • Puniya AK, Reddy CS, Kumar S, Singh K (2009) Influence of sunflower oil on conjugated linoleic acid production by Lactobacillus acidophilus and Lactobacillus casei. Ann Microbiol 59(3):505–507

    Article  CAS  Google Scholar 

  • Rainio A, Vahvaselkka M, Suomalalnen T (2001) Reduction of linoleic acid inhibition in production of conjugated linoleic acid by Propionibacterium freudenreichii ssp. shermanii. Can J Microbiol 47:735–740

    PubMed  CAS  Google Scholar 

  • Rodríguez-Alcalá LM, Braga T, Malcata FX, Gomes A, Fontecha J (2011) Quantitative and qualitative determination of CLA produced by Bifidobacterium and lactic acid bacteria by combining spectrophotometric and Ag+-HPLC techniques. Food Chem 125:1373–1378

    Article  Google Scholar 

  • Rosson RA, Grund AD (2001) Linoleate isomerase. World Patent 100846, 30

  • Rosson RA, Deng MD, Grund AD (2004) Polynucleotide encoding a Propioniba Crerium linoleate isomerase and uses thereof. US Patent 6706501

  • Shorland FB, Weenink RO, Johns AT (1995) Effect of the rumen on dietary fat. Nature 175:1129–1130

    Article  Google Scholar 

  • Sugano M, Tsujita A, Yamasaki M, Yamada K, Ikeda I, Kritchevsky D (1997) Lymphatic recovery, tissue distribution and metabolic effects of conjugated linoleic acid in rats. J Nutr Biochem 8:38–43

    Article  CAS  Google Scholar 

  • Van-Nieuwenhove CP, Oliszewski R, González SN (2007) Conjugated linoleic acid conversion by dairy bacteria cultured in MRS broth and buffalo milk. Appl Microbiol 44:467–474

    Article  CAS  Google Scholar 

  • Wanasundara NU, Shahidii F (1999) Concentration of omega 3-polyunsaturated fatty acids of seal blubber oil by urea complexation: optimization of reaction conditions. Food Chem 65:41–49

    Article  CAS  Google Scholar 

  • Wang LM, Lv JP, Chu ZQ (2007) Production of conjugated linoleic acid by Propionibacterium freudenreichii. Food Chem 103:313–318

    Article  CAS  Google Scholar 

  • Wang JW, Sun YM, Cao F, Wang PZ (2010) Medium optimization for lipopeptide production from Bacillus FH-1-2 by response surface analysis. J Dalian Polytech Univ 29(4):259–263

    CAS  Google Scholar 

  • Wani AA, Sogi DS, Grover L, Saxena DC (2006) Effect of temperature, alkali concentration, mixing time and meal solvent ratio on the extraction of watermelon seed proteins—response surface approach. Biosyst Eng 94(1):67–73

    Article  Google Scholar 

  • West D, Delany J, Camet P, Blohm F, Truett A, Scimeca J (1998) Effects of conjugated linoleic acid on body fat and energy metabolism in the mouse. Am J Physiol 275:667–672

    Google Scholar 

  • Xiao ZJ, Zhong RM, Chen HY, Yang RD (2005) Application and physiological function of L. plantarum. China Food Addit 2:87–89

    Google Scholar 

  • Xu S, Boylston TD, Glatz BA (2004) Effect of lipid source on probiotic bacteria and conjugated linoleic acid formation in milk model systems. J AOCS 6:589–595

    Google Scholar 

  • Yang H, Ye SH, Wang H, Xu LQ, Lin L, Wang M, Wang JH (2011) Optmization of coculture fermentation producing CLA. Sci Technol Food Ind 32(8):220–222

    Google Scholar 

  • Young JK, Rui HL, Daniel RB, James BR (2000) Effect of linoleic acid concentration on conjugated linoleic acid production by Butyrivibrio fibrisolvens A38. Appl Environ Microbiol 66(12):5226–5230

    Article  Google Scholar 

  • Zhang H, Cao J, Zhang GY (2006) Study on linoleate isomerase of Lactobacillus bulgaricus. Food Res Dev 27(7):102–107

    CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Program for Liaoning Excellent Talents in University (LR2011012, LJQ2011055, 2012B14NC128)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihui Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, S., Yu, T., Yang, H. et al. Optimal culture conditions for producing conjugated linoleic acid in skim-milk by co-culture of different Lactobacillus strains. Ann Microbiol 63, 707–717 (2013). https://doi.org/10.1007/s13213-012-0523-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-012-0523-7

Keywords

Navigation