Skip to main content
Log in

Dietary conjugated linolenic acid in relation to CLA differently modifies body fat mass and serum and liver lipid levels in rats

  • Articles
  • Published:
Lipids

Abstract

The present study compared the effect of dietary conjugated linolenic acid (CLNA) on body fat and serum and liver lipid levels with that of CLA in rats. FFA rich in linoleic acid, α-linolenic acid, CLA, or CLNA were used as experimental fats. Male Sprague-Dawley rats (4 wk old) were fed purified diets containing 1% of one of these experimental fats. After 4 wk of feeding, adipose tissue weights, serum and liver lipid concentrations, serum tumor necrosis factor (TNF)-α and leptin levels, and hepatic β-oxidation activities were measured. Compared with linoleic acid, CLA and, more potently, CLNA were found to reduce perirenal adipose tissue weight. The same trend was observed in the weight of epididymal adipose tissue. CLNA, but not CLA, was found to significantly increase serum and liver IG concentrations. Serum FFA concentration was also increased in the CLNA group more than in the other groups. The activity of β-oxidation in liver mitochondria and peroxisomes was significantly higher in the CLNA group than in the other groups. Thus, the amount of liver TG exceeded the ability of hepatic β-oxidation. Significant positive correlation was found between the adipose tissue weights and serum leptin levels in all animals (vs. perirenal: r=0.557, P<0.001; vs. epididymal: r=0.405, P<0.05). A less significant correlation was found between adipose tissue weights and serum TNF-α level (vs. perirenal: r=0.069, P<0.1; vs. epididymal: r=0.382, P<0.05). Although the mechanism for the specific effect of CLNA is not clear at present, these findings indicate that in rats CLNA modulated the body fat and TG metabolism differently from CLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CLNA:

conjugated linolenic acid

CPT:

carnitine palmitoyl-transferase

DTNB:

5,5-dithiobis-(2-nitrobenzoic acid)

LA:

linoleic acid

LNA:

α-linolenic acid

PPAR:

peroxisome proliferator-activated receptor

TNF:

tumor necrosis factor

UCP:

uncoupling proteinc

References

  1. Ha, Y.L., Grimm, N.K., and Pariza, M.W. (1989) Newly Recognized Anticarcinogenic Fatty Acids: Identification and Quantitation in Natural and Processed Cheese, J. Agric. Food Chem. 37, 75–81.

    Article  CAS  Google Scholar 

  2. Chin, S.F., Liu, W., Storkson, J.M., and Pariza, M.W. (1992) Dietary Source of Conjugated Diene Isomers of Linoleic Acid, a Novelly Recognized Class of Anticarcinogens, J. Food Comp. Anal. 5, 185–207.

    Article  CAS  Google Scholar 

  3. West, D.B., De Lany, J.P., Camet, P.M., Blohm, F., Truett, A.A., and Scimeca, J.A. (1998) Effects of Conjugated Linoleic Acid on Body Fat and Energy Metabolism in the Mouse, Am. J. Physiol. 275, R667-R672.

    PubMed  CAS  Google Scholar 

  4. De Lany, J.P., Blohm, F., Truett, A.A., Scimeca, J.A., and West, D.B. (1999) Conjugated Linoleic Acid Rapidly Reduces Body Fat Content in Mice Without Affecting Energy Intake, Am. J. Physiol. 276, R1172-R1179.

    Google Scholar 

  5. Berven, G., Bye, A., Hais, O., Blankson, H., Fagertun, H., Thom, E., Wadestein, J., and Gudmundsen, O. (2000) Safety of Conjugated Linoleic Acid (CLA) in Overweight or Obese Human Volunteers. Eur. J. Lipid Sci. 102, 455–462.

    Article  CAS  Google Scholar 

  6. Zambell, K.L., Keim, N.L., Van Loan, M.D., Gale, B., Benito, P., Kelley, D.S., Nelson, G.J. (2000) Conjugated Linoleic Acid Supplementation in Humans: Effects on Body Composition and Energy Expenditure, Lipids 35, 777–782.

    PubMed  CAS  Google Scholar 

  7. Medina, E.A., Horn, W.F., Keim, N.L., Havel, P.J., Benito, P., Kelley, D.S., Nelson, G.J., and Erickson K.L. (2000) Conjugated Linoleic Acid Supplementation in Humans: Effects on Circulating Leptin Concentrations and Appetite, Lipids 35, 783–788.

    PubMed  CAS  Google Scholar 

  8. Blankson, H., Stakkestad, J.A., Fagertun, H., Thom, E., Wadstein, J., and Gudmundsen, O. (2000) Conjugated Linoleic Acid Reduces Body Fat Mass in Overweight and Obese Humans, J. Nutr. 130, 2943–2948.

    PubMed  CAS  Google Scholar 

  9. Smedman, A., and Vessby, B. (2001) Conjugated Linoleic Acid Supplementation in Humans—Metabolic Effects, Lipids 36, 773–781.

    Article  PubMed  CAS  Google Scholar 

  10. Park, Y., Albright, K.J., Liu, W., Storkson, J.M., Cook, M.E., and Pariza, M.W. (1997) Effect of Conjugated Linoleic Acid on Body Composition in Mice, Lipids 32, 853–858.

    Article  PubMed  CAS  Google Scholar 

  11. Park, Y., Storkson, J.M., Albright, K.J., Liu, W., and Pariza, M.W. (1999) Evidence that trans-10,cis-12 Isomer of Conjugated Linoleic Acid Induces Body Composition Changes in Mice, Lipids 34, 235–241.

    Article  PubMed  CAS  Google Scholar 

  12. Lin, Y., Kreeft, A., Schuurbiers, J.A., and Draijer, R. (2001) Different Effects of Conjugated Linoleic Acid Isomers on Lipoprotein Lipase Activity in 3T3-L1 Adipocytes, J. Nutr. Biochem. 12, 183–189.

    Article  PubMed  CAS  Google Scholar 

  13. Sakono, M., Miyanaga, F., Kawahara, S., Yamaguchi, K., Fukuda, N., Watanabe, K., Iwata, T., and Sugano, M. (1999) Dietary Conjugated Linoleic Acid Reciprocally Modifies Ketogenesis and Lipid Secretion by the Rat Liver, Lipids 34, 997–1000.

    Article  PubMed  CAS  Google Scholar 

  14. Lee, K.N., Kritchevsky, D., and Pariza, M.W. (1994) Conjugated Linoleic Acid and Atherosclerosis in Rabbits, Atherosclerosis 108, 19–25.

    Article  PubMed  CAS  Google Scholar 

  15. Krichevsky, D., Tepper, S.A., Wright, S., Tso, P., Czarnecki, S.K. (2000) Influence of Conjugated Linoleic Acid (CLA) on Establishment and Progression of Atherosclerosis in Rabbits. J. Am. Coll. Nutr. 19, 472S-477S.

    Google Scholar 

  16. Belury, M.A., and Kempa-Steczko, A. (1997) Conjugated Linoleic Acid Modulates Hepatic Lipid Composition in Mice, Lipids 32, 199–204.

    Article  PubMed  CAS  Google Scholar 

  17. Belury, M.A., Moya-Camarena, S.Y., Liu, K.L., and Heuvel, J.P.V. (1997) Dietary Conjugated Linoleic Acid Induces Peroxisome-Specific Enzyme Accumulation and Ornithine Decarboxylase Activity in Mouse Liver, J. Nutr. Biochem. 8, 579–584.

    Article  CAS  Google Scholar 

  18. Yamasaki, M., Mansho, K., Mishima, H., Kasai, M., Sugano, M., Tachibana, H., and Yamada, K. (1999) Dietary Effect of Conjugated Linoleic Acid on Lipid Levels in White Adipose Tissue of Sprague-Dawley Rats, Biosci. Biotechnol. Biochem. 63, 1104–1106.

    Article  PubMed  CAS  Google Scholar 

  19. Horrobin, D.F., and Manku, M.S. (1983) How Do Polyunsaturated Fatty Acids Lower Plasma Cholesterol Levels? Lipids 18, 558–562.

    PubMed  CAS  Google Scholar 

  20. Sébédio, J.-L., Juaneda, P., Dobson, G., Ramilison, I., Martin, J.C., Chardigny, J.M., and Christie, W.W. (1997) Metabolites of Conjugated Isomers of Linoleic Acid (CLA) in the Rat, Biochim. Biophys. Acta 1345, 5–10.

    PubMed  Google Scholar 

  21. Banni, S., and Martin, J.C. (1998) Conjugated Linoleic Acid and Metabolites, in Trans Fatty Acids in Human Nutrition (Sébédio, J.-L., and Christie, W.W., eds.), pp. 261–302, Oily Press, Aberdeen, United Kingdom.

    Google Scholar 

  22. Dhar, P., and Bhattacharyya, D.K. (1998) Nutritional Characteristics of Oil Containing Conjugated Octadecatrienoic Fatty Acid. Ann. Nutr. Metab. 42, 290–296.

    Article  PubMed  CAS  Google Scholar 

  23. Igarashi, M., and Miyazawa, T. (2000) Newly Recognized Cytotoxic Effect of Conjugated Trienoic Fatty Acids on Cultures Human Tumor Cells, Cancer Lett. 148, 173–179.

    Article  PubMed  CAS  Google Scholar 

  24. Suzuki, R., Noguchi, R., Ota, T., Abe, M., Miyashita, K., and Kawada, T. (2001) Cytotoxic Effect of Conjugated Trienoic Fatty Acids on Mouse Tumor and Human Monocytic Leukemia Cells, Lipids 36, 477–482.

    PubMed  CAS  Google Scholar 

  25. Igarashi, M., and Miyazawa, T. (2000) Do Conjugated Eicosapentaenoic Acid and Conjugated Docosahexaenoic Acid Induce Apoptosis via Lipid Peroxidation in Cultured Human Tumor Cells? Biochem. Biophys. Res. Comm. 270, 649–656.

    Article  PubMed  CAS  Google Scholar 

  26. Kamegai, T., Kasai, M., and Ikeda, I. (2001) Improved Method for Preparation of the Methyl Ester of Conjugated Linoleic Acid, J. Oleo Sci. 50, 237–241.

    CAS  Google Scholar 

  27. Banni, S., Carta, G., Contini, M.S., Angioni, E., Deiana, M., Dessi, M.A., Melis, M.P., and Corongiu, F.P. (1996) Characterization of Conjugated Diene Fatty Acids in Milk, Dairy Products, and Lamb Tissues, J. Nutr. Biochem. 7, 150–155.

    Article  CAS  Google Scholar 

  28. Reeves, P.G., Nielsen, F.H., and Fahey, G.C. (1993) AIN-93 Purified Diets for Laboratory Rodents: Final Report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of the AIN-76A Rodent Diet, J. Nutr. 123, 1939–1951.

    PubMed  CAS  Google Scholar 

  29. Folch, J., Lees, M., and Slone-Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  30. Ide, T., Oku, H., and Sugano, M. (1982) Reciprocal Responses to Clofibrate in Ketogenesis and Triglyceride and Cholesterol Secretion in Isolated Rat Liver, Metabolism 31, 1065–1072.

    Article  PubMed  CAS  Google Scholar 

  31. Rouser, G., Siakotos, A.N., and Fleischer, S. (1966) Quantitative Analysis of Phospholipids by Thin-Layer Chromatography and Phosphorus Analysis of Spots, Lipids 1, 85–86.

    CAS  PubMed  Google Scholar 

  32. Fletcher, M.J. (1968) A Calorimetric Method for Estimating Serum Triglycerides, Clin. Chim. Acta 22, 393–397.

    Article  PubMed  CAS  Google Scholar 

  33. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) Protein Measurement with Folin Phenol Reagent, J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  34. Lieber, L.L., Abraham, T., and Helmrath, T. (1972) A Rapid Spectrophotometric Assay for Carnitine Palmitoyltransferase, Anal. Biochem. 50, 509–518.

    Article  Google Scholar 

  35. Lazarow, P.B. (1981) Assay of Peroxisomal β-Oxidation of Fatty Acids, Methods Enzymol. 72, 315–319.

    Article  PubMed  CAS  Google Scholar 

  36. MacGarry J.D., and Brown, N.F. (1997) The Mitochondrial Carnitine Palmitoyltransferase System. From Concept to Molecular Analysis, Eur. J. Biochem. 244, 1–14.

    Article  Google Scholar 

  37. Ashakumary, L., Rouyer, I., Takahashi, Y., Ide, T., Fukuda, N., Aoyama, T., Hashimoto, T., Mizugaki, M., and Sugano, M. (1999) Sesamin, A Sesame Lignan, Is a Potent Inducer of Hepatic Fatty Acid Oxidation in the Rat, Metabolism 48, 1303–1313.

    Article  PubMed  CAS  Google Scholar 

  38. Havel, R.J., and Kane, J.P. (1995) Structure and Metabolism of Plasma Lipoproteins, in The Metabolic Basis of Inherited Disease, 7th edn. (Scriver, C.R., Beaudet, A.L., Sly, W.S., and Valle, D., eds.), pp. 1841–1851, McGraw-Hill, New York.

    Google Scholar 

  39. Dhar, P., Ghosh, S., and Bhattacharyya, D.K. (1999) Dietary Effects of Conjugated Octadecatrienoic Fatty Acid (9 cis, 11 trans, 13 trans) Levels on Blood Lipids and Nonenzymatic in Vitro Lipid Peroxidation in Rats, Lipids 34, 109–114.

    Article  PubMed  CAS  Google Scholar 

  40. Halle, M., Berg, A., Northoff, H., and Keul, J. (1998) Importance of TNF-α and Leptin in Obesity and Insulin Resistance: A Hypothesis on the Impact of Physical Exercise, Exerc. Immunol. Rev. 4, 77–94.

    PubMed  CAS  Google Scholar 

  41. Semb, H., Peterson, J., Tavernier, J., and Olivecrona, T. (1987) Multiple Effects of Tumor Necrosis Factor on Lipoprotein Lipase in vivo, J. Biol. Chem. 262, 8390–8394.

    PubMed  CAS  Google Scholar 

  42. Zhang, B., Berger, J., Hu, E., Szalkowski, D., White-Carrington, S., Spiegelman, B.M., and Moller, D.E. (1996) Negative Regulation of Peroxisome Proliferator-Activated Receptor-γ Gene Expression Contributes to the Antiadipogenic Effects of Tumor Necrosis Factor-α. Mol. Endocrinol. 10, 1457–1466.

    Article  PubMed  CAS  Google Scholar 

  43. Spiegelman, B.M. (1998) PPAR-γ: Adipogenic Regulator and Thiazolidinedione Receptor. Diabetes 47, 507–514.

    PubMed  CAS  Google Scholar 

  44. Grimaldi, P.A. (2001) The Role of PPARs in Adipocyte Differentiation, Prog. Lipid Res. 40, 269–281.

    Article  PubMed  CAS  Google Scholar 

  45. Bastard, J.P., Hainque, B., Dusserre, E., Bruckert, E., Robin, D., Vallier, P., Perche, S., Robin, P., Turpin, G., Jardel, C., et al. (1999) Peroxisome Proliferator Activated Receptor-γ, Leptin and Tumor Necrosis Factor-α mRNA Expression During Very Low Calorie Diet in Subcutaneous Adipose Tissue in Obese Women, Diabetes Metab. Res. Rev. 15, 92–98.

    Article  PubMed  CAS  Google Scholar 

  46. Zeghari, N., Vidal, H., Younsi, M., Ziegler, O., Drouin, P., and Donner, M. (2000) Adipocyte Membrane Phospholipids and PPAR-γ Expression in Obese Women: Relationship to Hyperinsulinemia, Am. J. Physiol. Endocrinol. Metab. 279, E736-E743.

    PubMed  CAS  Google Scholar 

  47. Ricquier, D. (1998) Neonatal Brown Adipose Tissue. UCP1 and the Novel Uncoupling Proteins, Biochem. Soc. Trans. 26, 120–123.

    PubMed  CAS  Google Scholar 

  48. Masaki, T., Yoshimatsu, H., Chiba, S., Hidaka, S., Tajima, D., Kakuma, T., Kurokawa, M., and Sakata, T. (1999) Tumor Necrosis Factor-α Regulates in vivo Expression of the Rat UCP Family Differentially, Biochim. Biophys. Acta 1436, 585–592.

    PubMed  CAS  Google Scholar 

  49. Cook, W.S., Yeldandi, A.V., Rao, M.S., Hashimoto, T., and Reddy, J.K. (2000) Less Extrahepatic Induction of Fatty Acid β-Oxidation Enzymes by PPAR-α, Biochem. Biophys. Res. Commun. 278, 250–257.

    Article  PubMed  CAS  Google Scholar 

  50. Moya-Camarena, S.Y., Van den Heuvel, J.P., Blanchard, S.G., Leesnitzer, L.A., and Belury, M.A. (1999) Conjugated Linoleic Acid Is a Potent Naturally Occurring Ligand and Activator of PPAR-α. J. Lipid Res. 40, 1426–1433.

    PubMed  CAS  Google Scholar 

  51. Moya-Camarena, S.Y., Van den Heuvel J.P., and Belury, M.A. (1999) Conjugated Linoleic Acid Activates Peroxisome Proliferator-Activated Receptor α and β Subtypes but Does Not Induce Hepatic Peroxisome Proliferation in Sprague-Dawley Rats, Biochim. Biophys. Acta 1436, 331–342.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunori Koba.

About this article

Cite this article

Koba, K., Akahoshi, A., Yamasaki, M. et al. Dietary conjugated linolenic acid in relation to CLA differently modifies body fat mass and serum and liver lipid levels in rats. Lipids 37, 343–350 (2002). https://doi.org/10.1007/s11745-002-0901-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-002-0901-7

Keywords

Navigation