Skip to main content
Log in

Molecular cloning and functional characterization of a cinnamate 4-hydroxylase-encoding gene from Camptotheca acuminata

  • Short Communication
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Cinnamate 4-hydroxylase (C4H) catalyzes the regioselective para-hydroxylation of trans-cinnamic acid to form p-coumaric acid, the biosynthetic precursor of phenylpropanoid-based polymers. These biopolymers play an essential role in plant structure construction, development, and defense. Herein the open reading frame of CaC4H2 was cloned from Camptotheca acuminata, a deciduous camptothecin-producing tree native to China. CaC4H2 showed 94 % amino acid residues identity with those of reported CaC4H, which suggested that CaC4H2 is an isoform of C4Hs presented in C. acuminata. The intact CaC4H2 was overexpressed in Escherichia coli with its functional reaction partner cytochrome P450 reductase, CamCPR, which transfers electrons from NADPH to CaC4H2 to support the catalytic hydroxylation activity of CaC4H2. Upon incubating trans-cinnamic acid with the recombinant CaC4H2 and tCamCPR, the formation of p-coumaric acid was confirmed by the HPLC–DAD and UPLC-DAD-ESIMS analyses, which indicated the catalytic hydroxylation activity of CaC4H2. Quantitative real-time PCR analyses showed that CaC4H2 was expressed in all tissues of C. acuminata seedlings, which is consistent with the well-known conclusion that the C4H-catalyzed hydroxylation reaction is a key step within the biosynthetic pathway of phenylpropanoids. The functional characterization of CaC4H2 will be useful for molecular breeding and sustainable utilization and protection of the camptothecin-producing plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Achnine L, Blancaflor EB, Rasmussen S, Dixon RA (2004) Colocalization of l-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell 16:3098–3109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alber A, Ehlting J (2012) Cytochrome P450 s in lignin biosynthesis. Adv Bot Res 61:113–143

    Article  CAS  Google Scholar 

  • Chang MCY, Eachus RA, Trieu W, Ro DK, Keasling JD (2007) Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat Chem Biol 3:274–277

    Article  CAS  PubMed  Google Scholar 

  • Demain AL, Vaishnav P (2011) Natural products for cancer chemotherapy. Microbiol Biotechnol 4:687–699

    Article  Google Scholar 

  • Durst F, Nelson DR (1995) Diversity and evolution of plant P450 and P450-reductases. Drug Metab Drug Interact 12:189–206

    CAS  Google Scholar 

  • Ehlting J, Hamberger B, Million-Rousseau R, Werck-Reichhart D (2006) Cytochromes P450 in phenolic metabolism. Phytochem Rev 5:239–270

    Article  CAS  Google Scholar 

  • El-Seedi HR, El-Said AMA, Khalifa SAM, Göransson U, Bohlin L, Borg-Karlson AK, Verpoorte R (2012) Biosynthesis, natural sources, dietary intake, pharmacokinetic properties, and biological activities of hydroxycinnamic acids. J Agric Food Chem 60:10877–10895

    Article  CAS  PubMed  Google Scholar 

  • Gotoh O, Fujii-Kuriyama Y (1989) Evolution, structure, and gene regulation of cytochrome P-450. In: Ruckpaul K, Rein H (eds) Basis and mechanisms of regulation of cytochrome P450, frontiers in biotransformation. Taylor & Francis, London, New York, Philadelphia, pp 195–243

    Google Scholar 

  • Gravot A, Larbat R, Hehn A, Lièvre K, Gontier E, Goergen JL, Bourgaud F (2004) Cinnamic acid 4-hydroxylase mechanism-based inactivation by psoralen derivatives: cloning and characterization of a C4H from a psoralen producing plant—Ruta graveolens—exhibiting low sensitivity to psoralen inactivation. Arch Biochem Biophys 422:71–80

    Article  CAS  PubMed  Google Scholar 

  • Hotze M, Schröder G, Schröder J (1995) Cinnamate 4-hydroxylase from Catharanthus roseus, and a strategy for the functional expression of plant cytochrome P450 proteins as translational fusions with P450 reductase in Escherichia coli. FEBS Lett 374:345–350

    Article  CAS  PubMed  Google Scholar 

  • Kaneko M, Hwang EI, Ohnishi Y, Horinouchi S (2003) Heterologous production of flavanones in Escherichia coli: potential for combinatorial biosynthesis of flavonoids in bacteria. J Ind Microbiol Biotechnol 30:456–461

    Article  CAS  PubMed  Google Scholar 

  • Kim DG, Kim YJ, Lee SH, Lee I (2005) Effect of wounding and chemical treatments on expression of the gene encoding cinnamate-4-hydroxylase in Camptotheca acuminata leaves. J Plant Biol 48:298–303

    Article  CAS  Google Scholar 

  • Kim YJ, Kim DG, Lee SH, Lee I (2006) Wound-induced expression of the ferulate 5-hydroxylase gene in Camptotheca acuminata. BBA Gen Subjects 1760:182–190

    Article  CAS  Google Scholar 

  • Kochs G, Grisebach H (1989) Phytoalexin synthesis in soybean: purification and reconstitution of cytochrome P450 3,9-dihydroxypterocarpan 6a-hydroxylase and separation from cytochrome P450 cinnamate 4-hydroxylase. Arch Biochem Biophys 273:543–553

    Article  CAS  PubMed  Google Scholar 

  • Kochs G, Werck-Reichhart D, Grisebach H (1992) Further characterization of cytochrome P450 involved in phytoalexin synthesis in soybean: cytochrome P450 cinnamate 4-hydroxylase and 3,9-dihydroxypterocarpan 6a-hydroxylase. Arch Biochem Biophys 293:187–194

    Article  CAS  PubMed  Google Scholar 

  • Kong JQ, Lu D, Wang ZB (2014) Molecular cloning and yeast expression of cinnamate 4-hydroxylase from Ornithogalum saundersiae baker. Molecules 19:1608–1621

    Article  CAS  PubMed  Google Scholar 

  • Koopmann E, Logemann E, Hahlbrock K (1999) Regulation and functional expression of cinnamate 4-hydroxylase from parsley. Plant Physiol 119:49–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizutani M, Ohta D, Sato R (1997) Isolation of a cDNA and a genomic clone encoding cinnamate 4-hydroxylase from Arabidopsis and its expression manner in planta. Plant Physiol 113:755–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair PM, Vining LC (1965) Cinnamic acid hydroxylase in spinach. Phytochemistry 4:161–168

    Article  CAS  Google Scholar 

  • Nelson DR, Strobel HW (1988) On the membrane topology of vertebrate cytochrome P-450 proteins. J Biol Chem 263:6038–6050

    CAS  PubMed  Google Scholar 

  • Neuss N, Gorman M, Boaz HE, Cone NJ (1962) Vinca alkaloids. XI. Structures of leurocristine (LCR) and vincaleukoblastine (VLB). J Am Chem Soc 84:1509–1510

    Article  CAS  Google Scholar 

  • Ni Z, Li B, Neumann MP, Lv M, Fang L (2014) Isolation and expression analysis of two genes encoding cinnamate 4-hydroxylase from cotton (Gossypium hirsutum). J Integr Agr 13:2102–2112 (and references therein)

    Article  CAS  Google Scholar 

  • Nijkamp K, Westerhof RGM, Ballerstedt H, de Bont JAM, Wery J (2007) Optimization of the solvent-tolerant Pseudomonas putida S12 as host for the production of p-coumarate from glucose. Appl Microbiol Biotechnol 74:617–624 (and references therein)

    Article  CAS  PubMed  Google Scholar 

  • Pi Y, Liao Z, Chai Y, Zeng H, Wang P, Gong Y, Pang Y, Sun X, Tang K (2006) Molecular cloning and characterization of a novel stem-specific gene from Camptotheca acuminata. J Biochem Mol Biol 39:68–75

    CAS  PubMed  Google Scholar 

  • Qin H, Chamlong P (2007) Camptotheca acuminata Decaisne. Flora of China 13:300–301

    Google Scholar 

  • Qu X, Pu X, Chen F, Yang Y, Yang L, Zhang G, Luo Y (2015) Molecular cloning, heterologous expression, and functional characterization of an NADPH-cytochrome P450 reductase gene from Camptotheca acuminata, a camptothecin-producing plant. PLoS One 10:e0135397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Razzaghi-Asl N, Garrido J, Khazraei H, Borges F, Firuzi O (2013) Antioxidant properties of hydroxycinnamic acids: a review of structure-activity relationships. Curr Med Chem 20:4336–4450

    Article  CAS  Google Scholar 

  • Ro DK, Douglas CJ (2004) Reconstitution of the entry point of plant phenylpropanoid metabolism in yeast (Saccharomyces cerevisiae): implications for control of metabolic flux into the phenylpropanoid pathway. J Biol Chem 279:2600–2607

    Article  CAS  PubMed  Google Scholar 

  • Ro DK, Mah N, Ellis BE, Douglas CJ (2001) Functional characterization and subcellular localization of poplar (Populus trichocarpa x Populus deltoides) cinnamate 4-hydroxylase. Plant Physiol 126:317–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell DW, Conn EE (1967) The cinnamic acid 4-hydroxylase of pea seedlings. Arch Biochem Biophys 122:256–258

    Article  CAS  PubMed  Google Scholar 

  • Schalk M, Nedelkina S, Schoch G, Batard Y, Werck-Reichhart D (1999) Role of unusual amino acid residues in the proximal and distal heme regions of a plant P450, CYP73A1. Biochemistry 38:6093–6103

    Article  CAS  PubMed  Google Scholar 

  • Schoch GA, Attias R, Ret ML, Werck-Reichhart D (2003) Key substrate recognition residues in the active site of a plant cytochrome P450, CYP73A1: homology model guided site-directed mutagenesis. Eur J Biochem 270:3684–3695

    Article  CAS  PubMed  Google Scholar 

  • Shuab R, Lone R, Koul KK (2016) Cinnamate and cinnamate derivatives in plants. Acta Physiol Plant 38:64

    Article  CAS  Google Scholar 

  • Singh K, Kumar S, Rani A, Gulati A, Ahuja PS (2009) Phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) and catechins (flavan-3-ols) accumulation in tea. Funct Integr Genomics 9:125–134

    Article  CAS  PubMed  Google Scholar 

  • Sirikantaramas S, Asano T, Sudo H, Yamazaki M, Saito K (2007) Camptothecin: therapeutic potential and biotechnology. Curr Pharm Biotechnol 8:196–202

    Article  CAS  PubMed  Google Scholar 

  • Szczesnaskorupa E, Straub P, Kemper B (1993) Deletion of a conserved tetrapeptide, PPGP, in P450 2C2 results in loss of enzymatic activity without a change in its cellular location. Arch Biochem Biophys 304:170–175

    Article  CAS  Google Scholar 

  • Teutsch HG, Hasenfratz MP, Lesot A, Stoltz C, Garnier JM, Jeltsch JM, Durst F, Werck-Reichhart D (1993) Isolation and sequence of a cDNA encoding the Jerusalem artichoke cinnamate 4-hydroxylase, a major plant cytochrome P450 involved in the general phenylpropanoid pathway. Proc Natl Acad Sci USA 90:4102–4106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urban P, Werck-Reichhart D, Teutsch HG, Durst F, Regnier S, Kazmaier M, Pompon D (1994) Characterization of recombinant plant cinnamate 4-hydroxylase produced in yeast: kinetic and spectral properties of the major plant P450 of the phenylpropanoid pathway. Eur J Biochem 222:843–850

    Article  CAS  PubMed  Google Scholar 

  • Vannelli T, Qi WW, Sweigard J, Gatenby AA, Sariaslani FS (2007) Production of p-hydroxycinnamic acid from glucose in Saccharomyces cerevisiae and Escherichia coli by expression of heterologous genes from plants and fungi. Metab Eng 9:142–151

    Article  CAS  PubMed  Google Scholar 

  • Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3:2–20

    Article  CAS  PubMed  Google Scholar 

  • Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327

    Article  CAS  PubMed  Google Scholar 

  • Wester MR, Johnson EF, Marques-Soares C, Dijols S, Dansette PM, Mansuy D, Stout CD (2003) Structure of mammalian cytochrome P450 2C5 complexed with diclofenac at 2.1 Å resolution: evidence for an induced fit model of substrate binding. Biochemistry 42:9335–9345

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Park NI, Li X, Kim YK, Lee SY, Park SU (2010) Molecular cloning and characterization of phenylalanine ammonia-lyase, cinnamate 4-hydroxylase and genes involved in flavone biosynthesis in Scutellaria baicalensis. Bioresource Technol 101:9715–9722

    Article  CAS  Google Scholar 

  • Yamamura Y, Ogihara Y, Mizukami H (2001) Cinnamic acid 4-hydroxylase from Lithospermum erythrorhizon: cDNA cloning and gene expression. Plant Cell Rep 20:655–662

    Article  CAS  Google Scholar 

  • Yamazaki S, Sato K, Suhara K, Sakaguchi M, Mihara K, Omura T (1993) Importance of the proline-rich region following signal-anchor sequence in the formation of correct conformation of microsomal cytochrome P-450s. J Biochem 114:652–657

    CAS  PubMed  Google Scholar 

  • Yang CQ, Lu S, Mao YB, Wang LJ, Chen XY (2010) Characterization of two NADPH: cytochrome P450 reductases from cotton (Gossypium hirsutum). Phytochemistry 71:27–35

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Science and Technology Project for Outstanding Youths in Life Science (KSCX2-EW-Q-6) from the Chinese Academy of Sciences, the Applied and Basic Research Program of Sichuan Province (2015JY0058), and the 21172216 project from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinggang Luo.

Additional information

Communicated by H. Peng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2191 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Yang, L., Jiang, L. et al. Molecular cloning and functional characterization of a cinnamate 4-hydroxylase-encoding gene from Camptotheca acuminata . Acta Physiol Plant 38, 256 (2016). https://doi.org/10.1007/s11738-016-2275-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2275-7

Keywords

Navigation