Skip to main content
Log in

Effect of hydrogen sulfide on D1 protein in wheat under drought stress

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Drought usually induces plant growth inhibition and oxidative damage. This report showed the protections of hydrogen sulfide (H2S) against drought-induced damage in wheat, which was manifested in the better growth, higher relative water content (RWC), lower thiobarbituric acid-reactive substances (TBARS), and hydrogen peroxide (H2O2) as well as the increased activities of superoxide dismutase (SOD) and catalase (CAT). Drought often causes photosystem II (PS II) damage, which was observed in the decreased potential photochemical efficiency (F v/F m), actual photochemical efficiency (ΦPS II), photochemical quenching (qP), electron transfer rate (ETR), and increased non-photochemical quenching (qN), however, these effects could be alleviated by NaHS (H2S donor). D1 protein in PS II reaction center is the most sensitive target of PS II damage. Compared to water treatment, a higher level of transcription but less D1 protein and phosphorylated D1 protein was detected in wheat leaves when exposed to NaHS under drought stress, which may result from the higher expression of STN8 (catalyze D1 protein phosphorylation) and D1 protein degradation-related gene (Deg1, Deg5, Deg8, FtsH2, and FtsH5). These results suggested that H2S alleviated drought-induced PS II damage owing to fast D1 protein turnover rather than D1 protein content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CAT:

Catalase

CE:

Carboxylation efficiency

EDTA:

Ethylene diamine tetraacetic acid

F v/F m :

Potential photochemical efficiency

Lsp:

Light saturation point

Pmax:

Maximum net photosynthetic rate

PS II:

Photosystem II

ROS:

Reactive oxygen species

RWC:

Relative water content

SOD:

Superoxide dismutase

SPAD:

Soil and plant analyzer development

TBARS:

Thiobarbituric acid-reactive substances

ΦPS II:

Actual photochemical efficiency

References

  • Adam Z, Rudella A, van Wijk KJ (2006) Recent advances in the study of Clp, FtsH and other proteases located in chloroplasts. Curr Opin Plant Biol 9:234–240

    Article  CAS  PubMed  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Ali S, Farooq MA, Hussain S, Yasmeen T, Abbasi GH, Zhang G (2013) Alleviation of chromium toxicity by hydrogen sulfide in barley. Environ Toxicol Chem 32:2234–2239

    Article  CAS  PubMed  Google Scholar 

  • Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134

    Article  CAS  PubMed  Google Scholar 

  • Bharwana SA, Ali S, Farooq MA, Ali B, Iqbal N, Abbas F, Ahmad MS (2014) Hydrogen sulfide ameliorates lead-induced morphological, photosynthetic, oxidative damages and biochemical changes in cotton. Environ Sci Pollut Res Int 21:717–731

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye-binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Wu FH, Wang WH, Zheng CJ, Lin GH, Dong XJ, He JX, Pei ZM, Zheng HL (2011) Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings. J Exp Bot 62:4481–4493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Christou A, Manganaris GA, Papadopoulos I, Fotopoulos V (2013) Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways. J Exp Bot 64:1953–1966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Edelman M, Mattoo AK (2008) D1-protein dynamics in photosystem II: the lingering enigma. Photosynth Res 98:609–620

    Article  CAS  PubMed  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutase. I. Occurrence in higher plant. Plant Physiol 59:309–314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giardi MT, Rea G, Lambreva MD, Antonacci A, Pastorelli S, Bertalan I, Johanningmeier U, Mattoo AK (2013) Mutations of photosystem II D1 protein that empower efficient phenotypes of chlamydomonas reinhardtii under extreme environment in space. PLoS One 8:e64352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guo JW, Wei HM, Wu SF (2006) Effects of low temperature on the distribution of excitation energy in photosystem and the phosphorylation of thylakoid membrane proteins in rice. Acta Biophys Sin 22:197–202

    CAS  Google Scholar 

  • Heath RL, Packer K (1968) Leaf senescense: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Google Scholar 

  • Hetherington SE, Smillie RM, Davies WJ (1998) Photosynthetic activities of vegetative and fruiting tissues of tomato. J Exp Bot 49:1173–1181

    Article  CAS  Google Scholar 

  • Huesgen PF, Schuhmann H, Adamska I (2005) The family of Deg proteases in cyanobacteria and chloroplasts of higher plants. Physiol Plant 123:413–420

    Article  CAS  Google Scholar 

  • Jin Z, Xue S, Luo Y, Tian B, Fang H, Li H, Pei Y (2013) Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis. Plant Physiol Biochem 62:41–46

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Sakamoto W (2014) Phosphorylation of photosystem II core proteins prevents undesirable cleavage of D1 and contributes to the fine-tuned repair of photosystem II. Plant J 79:312–321

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Miura E, Ido K, Ifuku K, Sakamoto W (2009) The variegated mutants lacking chloroplastic FtsHs are defective in D1 degradation and accumulate reactive oxygen species. Plant Physiol 151:1790–1801

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ladjal M, Epron D, Ducrey M (2000) Effect of water deficit preconditioning on thermotolerance of photosystem II and susceptibility of photosynthesis to heat stress in cedar seedlings. Tree Physiol 20:1235–1241

    Article  CAS  PubMed  Google Scholar 

  • Li ZG, Gong M, Xie H, Yang L, Li J (2012) Hydrogen sulfide donor sodium hydrosulfide-induced heat tolerance in tobacco (Nicotiana tabacum L) suspension cultured cells and involvement of Ca2+ and calmodulin. Plant Sci 185–186:185–189

    Article  PubMed  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–568

    Article  CAS  PubMed  Google Scholar 

  • Nath K, Poudyal RS, Eom JS, Park YS, Zulfugarov IS, Mishra SR, Tovuu A, Ryoo N, Yoon HS, Nam HG, An G, Jeon JS, Lee CH (2013) Loss-of-function of OsSTN8 suppresses the photosystem II core protein phosphorylation and interferes with the photosystem II repair mechanism in rice (Oryza sativa). Plant J 76:675–686

    Article  CAS  PubMed  Google Scholar 

  • Nixon PJ, Michoux F, Yu J, Boehm M, Komenda J (2010) Recent advances in understanding the assembly and repair of photosystem II. Ann Bot 106:1–16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359

    Article  CAS  PubMed  Google Scholar 

  • Pandey DM, Yeo UD (2008) Stress-induced degradation of D1 protein and its photoprotection by DCPIP in isolated thylakoid membrane of barley leaf. Biol Plant 52:291–298

    Article  CAS  Google Scholar 

  • Pesaresi P, Pribil M, Wunder T, Leister D (2011) Dynamics of reversible protein phosphorylation in thylakoids of flowering plants: the roles of STN7, STN8 and TAP38. Biochim Biophys Acta 1807:887–896

    Article  CAS  PubMed  Google Scholar 

  • Samol I, Shapiguzov A, Ingelsson B, Fucile G, Crèvecoeur M, Vener AV, Rochaix JD, Goldschmidt-Clermont M (2012) Identification of a photosystem II phosphatase involved in light acclimation in Arabidopsis. Plant Cell 24:2596–2609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Su XY, Wu S, Yang L, Xue RL, Li H, Wang YX, Zhao HJ (2014) Exogenous progesterone alleviates heat and high light stress induced inactivation of photosystem II in wheat by enhancing antioxidant defense and D1 protein stability. Plant Growth Regul 74:311–318

    Article  CAS  Google Scholar 

  • Tikkanen M, Nurmi M, Kangasjärvi S, Aro EM (2008) Core protein phosphorylation facilitates the repair of photodamaged photosystem II at high light. Biochim Biophys Acta 1777:1432–1437

    Article  CAS  PubMed  Google Scholar 

  • Wang R (2002) Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16:1792–1798

    Article  CAS  PubMed  Google Scholar 

  • Wang YX, Suo B, Zhao PF, Qu XF, Yuan LG, Zhao XJ, Zhao HJ (2011) Effect of exogenous abscisic acid on psbA expression at grain filling stage in two wheat cultivars under drought stress. Acta Agron Sin 37:1372–1377

    CAS  Google Scholar 

  • Yamamoto Y, Aminaka R, Yoshioka M, Khatoon M, Komayama K, Takenaka D, Yamashita A, Nijo N, Inagawa K, Morita N, Sasaki T, Yamamoto Y (2008) Quality control of photosystem II: impact of light and heat stress. Photosynth Res 98:589–608

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Hu LY, Hu KD, He YD, Wang SH, Luo JP (2008) Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress. J Integr Plant Biol 50:1518–1529

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Ye YK, Wang SH, Luo JP, Jun T, Ma DF (2009a) Hydrogen sulfide counteracts chlorophyll loss in sweetpotato seedling leaves and alleviates oxidative damage against osmotic stress. Plant Growth Regul 58:243–250

    Article  CAS  Google Scholar 

  • Zhang H, Tang J, Liu XP, Wang Y, Yu W, Peng WY, Fang F, Ma DF, Wei ZJ, Hu LY (2009b) Hydrogen sulfide promotes root organogenesis in Ipomoea batatas, Salix matsudana and Glycine max. J Integr Plant Biol 51:1086–1094

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Hu LY, Li P, Hu KP, Jiang CX, Luo JP (2010a) Hydrogen sulfide alleviated chromium toxicity in wheat. Biol Plantarum 54:743–747

    Article  CAS  Google Scholar 

  • Zhang H, Jiao H, Jiang CX, Wang SH, Wei ZJ, Luo JP, Jones RL (2010b) Hydrogen sulfide protects soybean seedlings against drought-induced oxidative stress. Acta Physiol Plant 32:849–857

    Article  CAS  Google Scholar 

  • Zhang H, Tan ZQ, Hu LY, Wei ZJ, Luo JP, Jones RL (2010c) Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings. J Integr Plant Biol 52:556–567

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the fund of the State Key Laboratory of Wheat and Maize Crop Science (SKL2014KF-06), Scientific Research Foundation of the Higher Education Institutions of Henan Province, China (15A180040) and Agricultural Science and Technology Research Project of Henan Province (132102110125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Jie Zhao.

Additional information

Communicated by A. G.-Piekarska.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1402 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Gao, M.Q., Xue, R.L. et al. Effect of hydrogen sulfide on D1 protein in wheat under drought stress. Acta Physiol Plant 37, 225 (2015). https://doi.org/10.1007/s11738-015-1975-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-1975-8

Keywords

Navigation