Skip to main content
Log in

Hydrogen sulfide ameliorates lead-induced morphological, photosynthetic, oxidative damages and biochemical changes in cotton

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Poisonous lead (Pb), among heavy metals, is a potential pollutant that readily accumulates in soils and thus adversely affects physiological processes in plants. We have evaluated how exogenous H2S affects cotton plant physiological attributes and Pb uptake under Pb stress thereby understanding the role of H2S in physiological processes in plants. Two concentrations (0 and 200 μM) of H2S donor sodium hydrosulfide (NaHS) were experimented on cotton plants under Pb stress (0, 50, and 100 μM). Results have shown that Pb stress decreased plant growth, chlorophyll contents, SPAD value, photosynthesis, antioxidant activity. On the other hand, Pb stress increased the level of malondialdehyde (MDA), electrolyte leakage (EL), and production of H2O2 and uptake of Pb contents in all three parts of plant, viz. root, stem, and leaf. Application of H2S slightly increased plant growth, chlorophyll contents, SPAD value, photosynthesis, and antioxidant activity as compared to control. Hydrogen sulfide supply alleviated the toxic effects of lead on plant growth, chlorophyll contents, SPAD value, photosynthesis, and antioxidant activity in cotton plants. Hydrogen sulfide also reduced MDA, EL, and production of H2O2 and endogenous Pb levels in the three mentioned plant parts. On the basis of our results, we conclude that H2S has promotive effects which could improve plant survival under Pb stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3
Fig 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Ali S, Cai S, Zeng F, Qiu B, Zhang GP (2012) The effect of salinity and chromium stresses on uptake and accumulation of mineral elements in barley genotypes differing in salt tolerance. J Plant Nutr 35:827–839

    Article  CAS  Google Scholar 

  • Ali S, Farooq MA, Yasmeen T, Hussain S, Arif MS, Abbas F, Bharwana SA, Zhang GP (2013a) The influence of silicon on barley growth, photosynthesis and ultra-354 structure under chromium stress. Ecotox Environ Saf 89:66–72

    Article  CAS  Google Scholar 

  • Ali S, Farooq MA, Jahangir MM, Abbas F, Bharwana SA, Zhang GP (2013b) Effect of chromium toxicity on photosynthesis and anti-oxidative system in barley as affected by nitrogen form. Biol Plant. doi:10.1007/s10535-013-0336-y

    Google Scholar 

  • Alvarez ME, Pennell RI, Meijer PJ, Ishikawa A, Dixon RA, Lamb C (1998) Air pollution and global change. Backhuys Publishers, Leiden, pp 51–63, ISBN 90-73348-95-1

    Google Scholar 

  • Anjum SA, Wang LC, Farooq M, Hussain M, Xue LI, Zou CM (2011) Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J Agron Crop Sci 55:675–680

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–379

    Article  CAS  Google Scholar 

  • Atici O, Agar G, Battal P (2005) Changes in phytohormone contents in chickpea seeds germinating under lead or zinc stress. Biol Plant 49:215–222

    Article  CAS  Google Scholar 

  • Boswell C, Sharma NC, Sahi SV (2002) Copper tolerance and accumulation potential of Chalamydomonas reinhardtii. Bull Environ Contam Toxicol 69:546–553

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    Article  CAS  Google Scholar 

  • De Kok LJ (1990) Sulfur metabolism in plants exposed to atmospheric sulfur. In: Rennenberg H, Brunold C, De Kok LJ, Stulen I (eds) Sulfur nutrition and sulfur assimilation in higher plants. SPB Academic Publishing, The Hague, pp 111–130, ISBN 90-5103-038-X

    Google Scholar 

  • De Kok LJ, Stahl K, Rennenberg H (1989) Fluxes of atmospheric hydrogen sulfide to plant shoots. New Phytol 112:533–542

    Article  Google Scholar 

  • De Kok LJ, Stuiver CEE, Rubinigg M, Westerman S, Grill D (1997) Impact of atmospheric sulfur deposition on sulfur metabolism in plants, H2S as sulfur source for sulfur deprived Brassica oleracea L. Bot Acta 110:411–419

    Article  Google Scholar 

  • De Kok LJ, Westerman S, Stuiver CEE, Stulen I (2000) Atmospheric H2S as plant sulfur source: interaction with pedospheric sulfur nutrition—a case study with Brassica oleracea L. In: Brunold C, Rennenberg H, De Kok LJ, Stulen I, Davidian JC (eds) Sulfur nutrition. doi:10.1007/s00425-010-1134-9

  • Dhindsa RS, Dhindsa PP, Thorpe TA (1981) Leaf senescence: correlated with increased level of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    Article  CAS  Google Scholar 

  • Eick MJ, Peak JD, Brady PV, Pesek JD (1999) Kinetics of lead absorption/desorption on goethite: residence time effect. Soil Sci 164:28–39

    Article  CAS  Google Scholar 

  • Gajewska E, Sklodowska M, Slaba M, Mazur J (2006) Effect of nickel on antioxidative enzyme activities, praline and chlorophyll contents in wheat shoots. Plant Biol 50:653–659

    Article  CAS  Google Scholar 

  • Ganesh KS, Baskaran L, Rajasekaran S, Sumathi K, Chidambaram ALA, Sundaramoorthy P (2008) Chromium stress induced alterations in biochemical and enzyme metabolism in aquatic and terrestrial plants. Colloids Surf B 63:159–163

    Article  CAS  Google Scholar 

  • Godbold DY, Ketner C (1991) Lead influences root growth and mineral nutrition of Picea abies seedlings. Plant Physiol 139:95–99

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  Google Scholar 

  • Houot V, Etienne P, Petitot AS, Barbier S, Blein JP, Suty L (2001) Hydrogen peroxide induces programmed cell death features in cultured tobacco BY-2 cells, in a dose-dependent manner. Exp Bot 52:1721–1730

    Article  CAS  Google Scholar 

  • Hung KT, Hsu YT, Kao CH (2006) Hydrogen peroxide is involved in methyl jasmonate-induced senescence of rice leaves. Plant Physiol 127:293–303

    Article  CAS  Google Scholar 

  • Islam E, Liu D, Li T, Yang X, Jin X, Mahmood Q, Tian S, Li J (2007) Effect of toxicity of Pb 306 toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater 154:914–926

    Article  Google Scholar 

  • Jana S, Choudhuri MA (1981) Glycolate metabolism of three submerged aquatic angiosperms during aging. Aquat Bot 12:345–354

    Article  Google Scholar 

  • Jiang MY, Yang WY, Xu J (1994) Active oxygen damage effect of chlorophyll degradation in rice seedlings under osmotic stress. Acta Bot Sin 36:289–295

    CAS  Google Scholar 

  • Kastori R, Petrovic M, Petrovic N (1992) Effect of excess lead cadmium, copper and zinc on water relations in sunflower. J Plant Nutr 15:2427–2439

    Article  CAS  Google Scholar 

  • Kopyra M, Gwozdz EA (2003) Nitric oxide stimulates seeds germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol Biochem 41:1011–1017

    Article  CAS  Google Scholar 

  • Kubo A, Aono M, Nakajima N, Saji H, Tanaka K, Kondo N (1999) Differential responses in activity of antioxidant enzymes to different environmental stresses in, Arabidopsis thaliana. Plant Res 112:279–290

    Article  CAS  Google Scholar 

  • Lefer DJ (2007) A new gaseous signaling molecule emerges: cardio-protective role of hydrogen sulfide. Proc Natl Acad Sci U S A 104:17907–17908

    Article  CAS  Google Scholar 

  • Liu J, Li K, Xu J, Zhang Z, Ma T, Lu X, Yang J, Zhu Q (2004) Lead toxicity, uptake and translocation in different rice cultivars. Plant Sci 165:793–802

    Article  Google Scholar 

  • Mclnnis SM, Desikan R, Hancock JT, Hiscock SJ (2006a) Production of reactive oxygen species and reactive nitrogen species by angiosperm stigmas and pollen: potential signalling crosstalk? New Phytol 172:221–228

    Article  Google Scholar 

  • Mclnnis SM, Emery DC, Porter R, Desikan R, Hancock JT, Hiscock SJ (2006b) The role of stigma peroxidases in flowering plants: insights from further characterization of a stigma-specific peroxidase (SSP) from Senecio squalidus (Asteraceae). Exp Bot 57:1835–1846

    Article  Google Scholar 

  • Melillo MT, Leonetti P, Bongiovanni M, Astagnone SP, Bleve ZT (2006) Modulation of reactive oxygen species activities and H2O2 accumulation during compatible and incompatible tomato–root-knot nematode interactions. New Phytol 170:501–512

    Article  CAS  Google Scholar 

  • Metzner H, Rau H, Senger H (1965) untersuchungen zur synchronisierbakeit einzelner pigmentmangel-mutation von chlorella. Planta 65:186–194

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GT, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic signaling in guard cells. Nature 406:731–734

    Article  CAS  Google Scholar 

  • Potikha TS, Collins CC, Johnson DI, Delmer DP, Levine A (1999) The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiol 119:849–858

    Article  CAS  Google Scholar 

  • Reddy A, Kumar S, Jyonthsnakumari G, Thimmanaik S, Sudhakar S (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere 60:97–104

    Article  CAS  Google Scholar 

  • Sekiya J, Wilson LG, Filner P (1982) Resistance to injury by sulfur dioxide correlation with its reduction to and emission of hydrogen sulfide in cucurbitaceae. Plant Physiol 70:437–441

    Article  CAS  Google Scholar 

  • Su GX, Zhang WH, Liu YL (2006) Involvement of hydrogen peroxide generated by polyamine oxidative degradation in the development of lateral roots in soybean. Integr Plant Bio 48:426–432

    Google Scholar 

  • Tanyolac D, Ekmekc Y, Unalan S (2007) Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper. Chemosphere 67:89–98

    Article  CAS  Google Scholar 

  • Vernay P, Gauthier-Moussard C, Hitmi A (2007) Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere 68:1563–1575

    Article  CAS  Google Scholar 

  • Viarengo A (1985) Biochemical effects of trace metals. Mar Poll B 16:153–158

    Article  CAS  Google Scholar 

  • Wang R (2002) Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB 16:1792–1798

    Article  CAS  Google Scholar 

  • Wang GP, Li FJ, Zhang J, Zhao MR, Hui Z, Wang W (2010) Overaccumulation of glycine betaine enhances tolerance of the photosynthetic apparatus to drought and heat stress in wheat. Photosynthetica 48:30–34

    Article  CAS  Google Scholar 

  • Yang JL, Li YY, Zhang YJ, Zhang SS, Wu YR, Wu P, Zheng SJ (2008) Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex. Plant Physiol 146:602–611

    Article  CAS  Google Scholar 

  • Zhang XZ (1992) The measurement and mechanism of lipid peroxidation and SOD, POD and CAT activities in biological system. In: Zhang XZ (ed) Research methodology of crop physiology. Agriculture Press, Beijing, pp 208–211

    Google Scholar 

  • Zhang JX, Kirham MB (1994) Drought stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol 35:785–791

    CAS  Google Scholar 

  • Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song CP (2001) Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol 126:1438–1448

    Article  CAS  Google Scholar 

  • Zhang C, Wang L, Nie Q, Zhang W, Zhang F (2008a) Long-term effects of exogenous silicon on cadmium translocation and toxicity in rice (Oryza sativa L.). Environ Exp Bot 62:300–307

    Article  CAS  Google Scholar 

  • Zhang H, Li YH, Hu LY, Wang SH, Zhang FQ, Hu KD (2008b) Effects of exogenous nitric oxide donor on antioxidant metabolism in wheat leaves under aluminum stress. Russ. Journal of Plant Physiol 55: 469–474

    Google Scholar 

  • Zhang H, Ye YK, Wang SH, Luo JP, Tang J, Ma DF (2009) Hydrogen sulfide counteracts chlorophyll loss in sweet potato seedling leaves and alleviates oxidative damage against osmotic stress. Plant Growth Regul 58:243–250

    Article  CAS  Google Scholar 

  • Zhang H, Tan ZQ, Hu LY, Wang SH, Luo JP, Jones RL (2010a) Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings. J Integr Plant Biol 52:556–567

    Article  CAS  Google Scholar 

  • Zhang H, Jiao H, Jiang CX, Wang SH, Wei ZJ, Luo JP, Jones RL (2010b) Hydrogen sulfide protects soybean seedlings against drought-induced oxidative stress. Acta Physiol Plant 32:849–857

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shafaqat Ali.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bharwana, S.A., Ali, S., Farooq, M.A. et al. Hydrogen sulfide ameliorates lead-induced morphological, photosynthetic, oxidative damages and biochemical changes in cotton. Environ Sci Pollut Res 21, 717–731 (2014). https://doi.org/10.1007/s11356-013-1920-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1920-6

Keywords

Navigation