Skip to main content
Log in

Hydrogen sulfide alleviated chromium toxicity in wheat

  • Brief Communication
  • Published:
Biologia Plantarum

Abstract

Effects of H2S on seed germination under chromium (Cr) stress were investigated in wheat (Triticum aestivum L.). Under Cr stress, the percentage of germination of wheat seeds decreased, but this decrease could be alleviated by pretreatment with NaHS, an H2S donor, in a dose-dependent manner. Furthermore, NaHS significantly enhanced the activities of amylase, esterase, superoxide dismutase, catalase, ascorbate peroxidase, and guaiacol peroxidase in Cr-stressed germinating seeds, whereas reduced the Cr-induced increase in lipoxygenase activity and over-production of malondialdehyde (MDA) and H2O2, and sustained slightly higher content of endogenous H2S.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

APX:

ascorbate peroxidase

CAT:

catalase

LOX:

lipoxygenase

MDA:

malondialdehyde

POD:

peroxidase

ROS:

reactive oxygen species

SOD:

superoxide dismutase

References

  • Bishnoi, N.R., Chugh, L.K., Sawhney, S.K.: Effects of chromium on photosynthesis, respiration and nitrogen fixation in pea (Pisum sativum L.) seedlings. — J. Plant Physiol. 142: 25–30, 1993a.

    CAS  Google Scholar 

  • Bishnoi, N.R., Dua, A., Gupta, V.K., Sawhney S.K.: Effect of chromium on seed germination, seedling growth and yield of peas. — Agr. Ecosyst. Environ. 47: 47–57, 1993b.

    Article  CAS  Google Scholar 

  • Clijsters, H., Cuypers, A., Vangronsveld, J.: Physiological responses to heavy metals in plants; defence against oxidative stress. — Z. Naturforsch. 54c: 730–734, 1999.

    Google Scholar 

  • Delledonne, M.: NO news is good news for plants. — Curr. Opin. Plant Biol. 8: 390–396, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Dixit, V., Pandey, V., Shyam, R.: Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L. cv. Azad) root mitochondria. — Plant Cell Environ. 25: 687–693, 2002.

    Article  CAS  Google Scholar 

  • García-Limones, C., Hervás, A., Navas-cortés, J.A., Jiménez-Díaz, R.M., Tena, M.: Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceris. — Physiol. mol. Plant Pathol. 61: 325–337, 2002.

    Article  Google Scholar 

  • Gupta, S., Srivastava, S., Pardha Saradhi, P.: Chromium increases photosystem 2 activity in Brassica juncea. — Biol. Plant. 53: 100–104, 2009.

    Article  CAS  Google Scholar 

  • Hällgren, J.E., Fredriksson, S.A.: Emission of hydrogen sulfide from sulfate dioxide-fumigated pine trees. — Plant Physiol. 70: 456–459, 1982.

    Article  PubMed  Google Scholar 

  • Han, Y., Xuan, W., Yu, T., Fang, W.B., Lou, T.L., Gao, Y., Shen, W.B.: Exogenous hematin alleviates mercury-induced oxidative damage in the roots of Medicago sativa. — J. Integr. Plant Biol. 49: 1703–1713, 2007.

    Article  CAS  Google Scholar 

  • Heath, R.L., Packer, K.: Leaf senescense correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. — J. exp. Bot. 32: 93–101, 1968.

    Google Scholar 

  • Hosoki, R., Matsuki, N., Kimura, H.: The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. — Biochem. biophys. Res. Commun. 237: 527–531, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Huang, B.K., Xu, S., Xuan, W., Li, M., Cao, Z.Y., Liu, K.L., Lin, T.F., Shen, W.B.: Carbon monoxide alleviates salt-induced oxidative damage in wheat seedling leaves. — J. Integr. Plant Biol. 48: 249–254, 2006.

    Article  CAS  Google Scholar 

  • Leon, S., Touraine, B., Briat, J.F., Lobreaux, S.: The AtNFS2 gene from Arabidopsis thaliana encodes a NifS-like plastidial cysteine desulphurase. — Biochem. J. 366: 557–564, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Matés, J.M.: Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. — Toxicology 153: 83–104, 2000.

    Article  PubMed  Google Scholar 

  • Panda, S.K., Khan, M.H.: Antioxidant efficiency in rice (Oryza sativa L.) leaves under heavy metal toxicity. — J. Plant Biol. 30: 23–29, 2003.

    Google Scholar 

  • Patterson, B.D., Mackae, E.A., Ferguson, I.B.: Estimation of hydrogen peroxide in plant extracts using titanium (IV). — Anal. Biochem. 139: 487–492, 1984.

    Article  CAS  PubMed  Google Scholar 

  • Rausch, T., Wachter, A.: Sulfur metabolism: a versatile platform for launching defence operations. — Trends Plant Sci. 10: 503–509, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Rennenberg, H., Filner, P.: Stimulation of H2S emission from pumpkin leaves by inhibition of glutathione synthesis. — Plant Physiol. 69: 766–770, 1982.

    Article  CAS  PubMed  Google Scholar 

  • Rennenberg, H.: Role of O-acetylserine in hydrogen sulfide emission from pumpkin leaves in response to sulfate. — Plant Physiol. 73: 560–565, 1983.

    Article  CAS  PubMed  Google Scholar 

  • Rennenberg, H., Filner P.: Developmental changes in the potential for H2S emission in cucurbit plants. — Plant Physiol. 71: 269–275, 1983.

    Google Scholar 

  • Riemenschneider, A., Wegele, R., Schmidt, A., Papenbrock, J.: Isolation and characterization of a D-cysteine desulfhydrase protein from Arabidopsis thaliana. — FEBS J. 272: 1291–1304, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Sa, Z.S., Huang, L.Q., Wu, G.L., Ding, J.P., Chen, X.Y., Yu, T., Shi, C., Shen, W.B.: Carbon monoxide: a novel antioxidant against oxidative stress in wheat seedling leaves. — J. Integr. Plant Biol. 49: 638–645, 2007.

    Article  CAS  Google Scholar 

  • Sekiya, J., Schmidt, A., Wilson, L.G., Filner, P.: Emission of hydrogen sulfide by leaf tissue in response to L-cysteine. — Plant Physiol. 70: 430–436, 1982a.

    Article  CAS  PubMed  Google Scholar 

  • Sekiya, J., Wilson, L.G., Filner, P.: Resistance to injury by sulfur dioxide: correlation with its reduction to, and emission of, hydrogen sulfide in Cucurbitaceae. — Plant Physiol. 70: 437–441, 1982b.

    Article  CAS  PubMed  Google Scholar 

  • Shanker, A.K., Djanaguiraman, M., Sudhagar, R., Chandrashekar, C.N., Pathmanabhan, G.: Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata (L.) R. Wilczek. cv. CO 4) roots. — Plant Sci. 166: 1035–1043, 2004.

    Article  CAS  Google Scholar 

  • Sharma, D.C., Chatterjee, C., Sharma, C.P.: Chromium accumulation and its effect on wheat (Triticum aestivum L. cv. Dh 2204) metabolism. — Plant Sci. 111: 145–151, 1995.

    Article  CAS  Google Scholar 

  • Surrey, K.: Spectrophotometric method for determination of lipoxidase activity. — Plant Physiol. 39: 65–70, 1964.

    Article  CAS  PubMed  Google Scholar 

  • Vajpayee, P., Rai, U.N., Ali, M.B., Tripathi, R.D., Yadav, V., Sinha, S., Singh, S.N.: Chromium-induced physiologic changes in Vallisneria spiralis L. and its role in phytoremediation of tannery effluent. — Bull. Environ. Contam. Toxicol. 67: 246–256, 2002.

    Google Scholar 

  • Wilson, L.G., Bressan, R.A., Filner, P.: Light-dependent emission of hydrogen sulfide from plants. — Plant Physiol. 61: 184–189, 1978.

    Article  CAS  PubMed  Google Scholar 

  • Winner, W.E., Smith, C.L., Koch, G.W., Mooney, H.A., Bewley, J.D., Krouse, H.R.: Rates of emission of H2S from plants and patterns of stable sulfur isotope fractionation. — Nature 289: 672–673, 1981.

    Article  CAS  Google Scholar 

  • Yu, X.Z., Gu, J.D., Huang, S.Z.: Hexavalent chromium induced stress and metabolic responses in hybrid willows. — Ecotoxicology 16: 299–309, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., Hu, L.Y., Hu, K.D., He, Y.D., Wang, S.H., Luo, J.P.: Hydrogen sulfide promotes wheat seed germination and alleviates the oxidative damage against copper stress. — J. Integr. Plant Biol. 50: 1518–1529, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., Ye, Y.K., Wang, S.H., Luo, J.P., Tang, J., Ma, D.F.: Hydrogen sulfide counteracts chlorophyll loss in sweetpotato seedling leaves and alleviates oxidative damage against osmotic stress. — Plant Growth Regul. 58: 243–250, 2009.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Great Project of Natural Science Foundation from Anhui Provincial Education Department (ZD200910), and the innovation fund to undergraduate students from Hefei University of Technology (XS0637, 08072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Zhang.

Additional information

The first two authors contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Hu, L.Y., Li, P. et al. Hydrogen sulfide alleviated chromium toxicity in wheat. Biol Plant 54, 743–747 (2010). https://doi.org/10.1007/s10535-010-0133-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-010-0133-9

Additional key words

Navigation